

User's Manual

8

μPD78F807x Microcontroller with LIN Transceiver & Half-Bridge Drivers

User's Manual: Hardware

RENESAS MCU µPD78F807x Microcontroller

μPD78F8071(A) μPD78F8072(A) μPD78F8073(A) μPD78F8074(A) μPD78F8075(A) μPD78F8077D

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice.

Rev.2.00 Sep 2012

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

How to Use This Manual

- **Readers** This manual is intended for user engineers who wish to understand the functions of the μ PD78F807x, and to design and develop application systems and programs for this device.
- Purpose This manual is intended to give users an understanding of the functions described in the Organization below.
- **Organization** There are four manuals for the *μ* PD78F807x microcontroller: this manual, 78K0/Kx2 User's Manual, 78K0/Kx2 ROM Expansion Products User's Manual, and the Instructions edition (common to the 78K0 Series).

μ PD78F807x Microcontroller User's Manual		78K0/Kx2 User's Manual			78K0/Kx2 ROM Expansion Products User's Manual	
• Pin	functions	•	Pin functions	•	CPU architecture	
• Inte	ernal block functions	•	Internal block functions	•	Memory bank switching	
• On	-chip peripheral	٠	Interrupts		function	
fun	ctions	•	Other on-chip peripheral	•	Multiplier/divider	
• Ele	ctrical specifications		functions	•	Flash memory	

• Electrical specifications

78K/0 Series User's Manual Instructions

- CPU functions
- Instruction set
- Explanation of each
 instruction
- How to Read This Manual It is assumed that the readers of this manual have general knowledge of electrical engineering, logic circuits, and microcontrollers.
 - To gain a general understanding of functions:
 - → Read this manual in the order of the **CONTENTS**. The mark "<R>" shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what:" field.

- The notation of the product name
 - \rightarrow Description of (A) is omitted in this manual. "(A)" product names should be read as follows.
 - μ PD78F8071 $\rightarrow \mu$ PD78F8071(A)
 - μ PD78F8072 $\rightarrow \mu$ PD78F8072(A)
 - μ PD78F8073 $\rightarrow \mu$ PD78F8073(A) - μ PD78F8074 $\rightarrow \mu$ PD78F8074(A)
 - μ PD78F8075 $\rightarrow \mu$ PD78F8075(A)
- To know details of the microcontroller block:
 - → Refer to the separate documents: **78K0/Kx2 User's Manual (R01UH0008) and** 78K0/Kx2 ROM Expansion Products User's Manual (U19719E).

78K0/KC2 Microcontroller Products	Product Name corresponding to 78K0/KC2 Microcontroller Products
μ PD78F0511A	μ PD78F8071
μ PD78F0512A	μ PD78F8072
μ PD78F0513A	μ PD78F8073
μ PD78F0514A	μ PD78F8074
μ PD78F0515A	μ PD78F8075
μ PD78F0517DA	μ PD78F8077D

- To know details of the 78K0 microcontroller instructions:
 - → Refer to the separate document: 78K/0 Series Instructions User's Manual (U12326E).

Conventions Data significance:		Higher digits on the left and lower digits on the right	
	Active low representations:	\overrightarrow{xxx} (overscore over pin and signal name)	
	Note:	Footnote for item marked with Note in the text	
	Caution:	Information requiring particular attention	
	Remark:	Supplementary information	
	Numerical representations:	Binary ···×××× or ××××B	
		Decimal …××××	
		Hexadecimal ····××××H	

 Related Documents
 The related documents indicated in this publication may include preliminary versions.

 However, preliminary versions are not marked as such.
 However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μ PD78F807x Microcontroller with LIN Transceiver & Half-Bridge Drivers User's Manual:	This Manual
Hardware	
78K0/Kx2 User's Manual	R01UH0008
78K0/Kx2 ROM Expansion Products User's Manual	U19719E
78K/0 Microcontroller Instructions User's Manual	U12326E
78K0/Kx2 Flash Memory Programming (Programmer) Application Note	U17739E
78K0 Microcontrollers Self Programming Library Type01 User's Manual	U18274E
78K0 Microcontrollers EEPROM [™] Emulation Library Type01 User's Manual	U18275E

Documents Related to Flash Memory Programming

Document Name	Document No.
PG-FP5 Flash Memory Programmer User's Manual	R20UT0008

Other Documents

Document Name	Document No.
RENESAS MICROCOMPUTER GENERAL CATALOG	R01CS0001E
Semiconductor Package Mount Manual	Note
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E
Review of Quality and Reliability Handbook Information	C12769E

Note See the "Semiconductor Package Mount Manual" website (http://www.renesas.com/products/package/manual/index.jsp)

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, inc.

EEPROM is a trademark of Renesas Electronics Corporation.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

CONTENTS

1. Outlin	ie	1
1.1	Features	1
1.2	Applications	3
1.3	Ordering Information	3
1.4	Pin Configuration (Top View)	4
1.5	Block Diagram	6
	1.5.1 Microcontroller Block Diagram	7
	1.5.2 Analog Block Diagram	
1.6	Outline of Functions	9
2. Pin Fu	unctions	
2.1	Microcontroller Block Pin Functions	
2.2	Analog Part Pins	
2.3	Description of Pin Functions	
	2.3.1 P00, P01 (Port 0)	
	2.3.2 P10 to P17 (Port 1)	19
	2.3.3 P20 to P24 (Port 2)	
	2.3.4 P30 to P33 (port 3)	21
	2.3.5 P60 to P61 (port 6)	
	2.3.6 P70 (port 7)	
	2.3.7 P120 to P122 (port 12)	
	2.3.8 P130 (port 13)	
	2.3.9 AVREF, AVSS, VDD, VSS	
	2.3.10 RESET	
	2.3.11 REGC	
	2.3.12 FLMD0	
	2.3.13 HBO1 to HBO 6	
	2.3.14 SUP1 to SUP6	
	2.3.15 GND, GND1 to GND6, GND_DRV	
	2.3.16 RESET_A	
	2.3.17 LIN	
	2.3.18 MSLP 2.3.19 MOD1, MOD2	
	2.3.19 MOD1, MOD2	
	2.3.20 VRO	
	2.3.22 SVDD	
	2.3.23 SRC	

	2.3.24 SCKA	
	2.3.25 SOA	
	2.3.26 SIA	
	2.3.27 SSA	
	2.3.28 PWMI	
	2.3.29 INH	
	2.3.30 IC	
2.4	Pin I/O Circuits and Recommended Connection of Unused Pins	29
3. Micro	controller Functions	35
3.1	Differences in Functions between µPD78F807x and 78K0/KC2	35
3.2	Differences in Special Function Registers between μ PD78F807x and 78K0/KC2	36
3.3	Differences in Register Bit Settings between μ PD78F807x and 78K0/KC2	38
	3.3.1 Port mode register	
	3.3.2 Port register	39
	3.3.3 Pull-up resistor option register	
	3.3.4 Analog input channel specification register	40
	3.3.5 A/D port configuration register	41
	3.3.6 External interrupt rising/falling edge enable register	42
	3.3.7 Key return mode register	43
	3.3.8 Watch timer operation mode register	43
	3.3.9 Clock operation mode select register	
	3.3.10 Processor clock control register	44
	3.3.11 IIC clock selection register 0	45
	3.3.12 Interrupt request flag register (IF1L)	47
	3.3.13 Interrupt mask flag register (MK1L)	47
	3.3.14 Priority specification flag register (PR1L)	48
4. Writin	g with Flash Programmer	49
5. Powe	r Supply Circuit	51
5.1	Power Supply Function	51
5.2	Regulator Output Function	51
5.3	External Sensor Power Supply Output Function	51
5.4	Over Current Protection Function	51
5.5	Low-Voltage Detection Function	52
5.6	External Dropper Auxiliary Function	52
6. LIN Tı	ansceiver	55
6.1	LIN Transceiver Function	55

6.2	Operation Modes	56
6.3	Over Current Limiter	62
7. Half-B	ridge Circuit	63
7.1	Half-Bridge Drivers	63
7.2	Over Current Protection Function	65
7.3	Through-Current Protection Function	65
8. SPI &	PWM Controller	67
8.1	SPI & PWM Controller	67
8.2	SPI Communication	68
8.3	SPI Control Registers	70
9. Protec	ction Functions	76
9.1	Thermal Shutdown Circuit Operation	77
9.2	Over Current Limiter Operation	
	9.2.1 Power Supply Circuit	78
	9.2.2 LIN Transceiver	78
	9.2.3 Half-Bridge Circuit	78
10. Anal	og Reset Function	79
11. Elect	rical Specifications ((A) Grade Products)	
11.1	Absolute Maximum Ratings	81
11.2	Microcontroller Block Electrical Characteristics	83
11.3	Analog Block Characteristics	104
12. Pack	age Drawing	113
APPEND	DEX A PACKAGE HEAT-DISSIPATION	114
APPEND	DEX B CALCULATION EXAMPLE OF TOTAL POWER DISSIPATION AND JUNCTI	ON
	TEMPERATURE	115
APPEND	DEX C REVISION HISTORY	116
C.1	Major Revisions in This Edition	116
0.1		

RENESAS

μPD78F807x Microcontroller with LIN Transceiver & Half-Bridge Drivers

1. Outline

 μ PD78F807x is an MCP (Multi-Chip Package) which includes 2 chips in 1 package: an analog chip (incorporating the LIN transceiver, power supply, six-channel half-bridge drivers) and an 8-bit microcontroller chip. The 78K0/KC2 is used in the 8-bit microcontroller block of μ PD78F807x.

1.1 Features

•	ROM, RAM capacities
---	---------------------

ROM Note	High-Speed RAM Note	Expansion RAM Note	Product (64 Pins)
16 KB	768 B	-	μPD78F8071
24 KB	1 KB	-	μPD78F8072
32 KB	1 KB	-	μPD78F8073
48 KB	1 KB	1 KB	μPD78F8074
60 KB	1 KB	2 KB	μPD78F8075
128 KB	1 KB	6 KB	μPD78F8077D

Note The internal flash memory, internal high-speed RAM capacities, and internal expansion RAM capacities can be changed using the internal memory size switching register (IMS) and the internal expansion RAM size switching register (IXS).

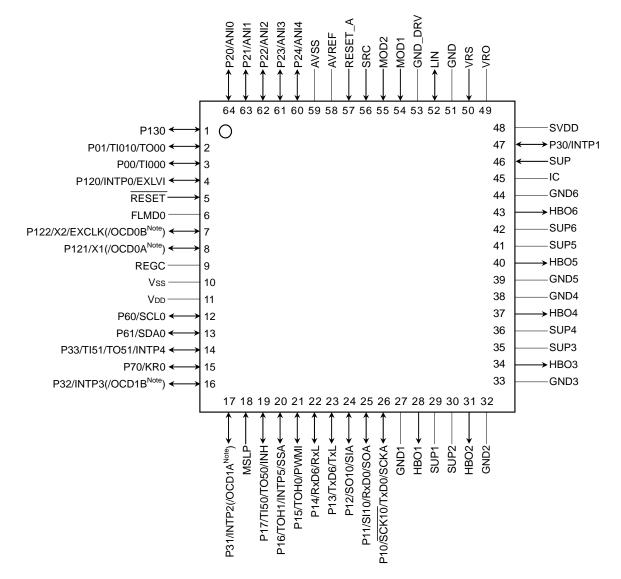
- On-chip single-power-supply flash memory
- Self-programming (with boot swap function)
- On-chip debug function (µPD78F8077D only) Note 1
- On-chip power-on-clear (POC) circuit and low-voltage detector (LVI)
- On-chip watchdog timer (operable with the internal low speed oscillation clock)
- On-chip multiplier/divider Note 2
- On-chip key interrupt function
- I/O ports: μPD78F807x: 26 (N-ch open drain: 2)
- Notes 1. The μPD78F8077D has an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. Only supported by the product with 48-Kbyte or more flash memory.

•	Timer: 7 channels					
	— 16-bit timer/event counter:	1 channel				
	— 8-bit timer/event counter:	2 channels				
	— 8-bit timer:	2 channels				
	— Watch timer:	1 channel				
	— Watch dog timer:	1 channel				
•	Serial interface: 3 channels					
	— UART (LIN (Local Interconne	ct Network)-bus supported):	1 channel			
	— CSI/UART ^{Note} :		1 channel			
	— IIC:		1 channel			
<r> •</r>	10-bit resolution A/D converter: 5 d	channels				
	On-chip power supply circuit					
	Output voltage: $5 V \pm 3\%$					
	On-chip power supply output function for external sensors					
	On-chip external dropper auxiliary function					
	On-chip over current limiter					
•	LIN transceiver					
<r></r>	The LIN transceiver complies with LIN Specifications Rev.2.0, 2.1					
	Low power consumption achieved with on-chip sleep function					
	On-chip pull-up resistors for slave applications					
	On-chip over current limiter					
•	Driver					
	Half-bridge driver: 6 channels					
	On-chip over current limiter					
•	Overheat protection circuit					
<r>•</r>	SPI & PWM controller:1 channel					
•	Package: 64-pin plastic WQFN (fin	- / / /				
•	Operation ambient temperature: (A) grade products: $T_A = -40$ to -40	+85 °C			

Note Select either of these functions since they share the same pins.

1.2 Applications

- Automotive equipment
 - System control for body electronic control units
 - Mirror control
 - Flap control, etc.

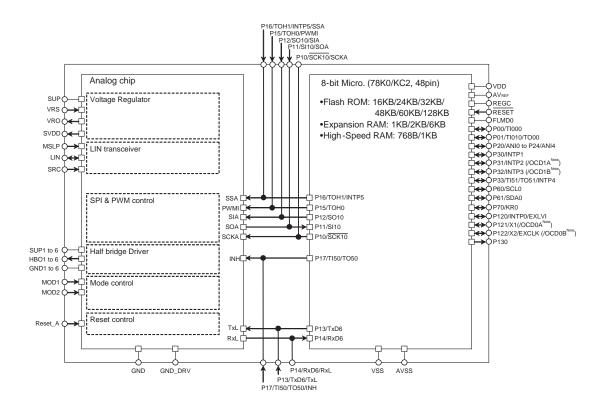

1.3 Ordering Information

Part Number	Package	Quality Grade
μPD78F8071K8A-6B4-G ^{Note}	64-pin plastic WQFN (fine pitch) (9×9)	Special (for high-reliability electronics equipment)
μΡD78F8072K8A-6B4-G ^{Note}	64-pin plastic WQFN (fine pitch) (9×9)	Special (for high-reliability electronics equipment)
μΡD78F8073K8A-6B4-G ^{Note}	64-pin plastic WQFN (fine pitch) (9×9)	Special (for high-reliability electronics equipment)
μΡD78F8074K8A-6B4-G ^{Note}	64-pin plastic WQFN (fine pitch) (9×9)	Special (for high-reliability electronics equipment)
μΡD78F8075K8A-6B4-G ^{Note}	64-pin plastic WQFN (fine pitch) (9×9)	Special (for high-reliability electronics equipment)
μPD78F8077DK8-6B4-G	64-pin plastic WQFN (fine pitch) (9×9)	Standard (for general electronics equipment)
Note (A) grade product		

1.4 Pin Configuration (Top View)

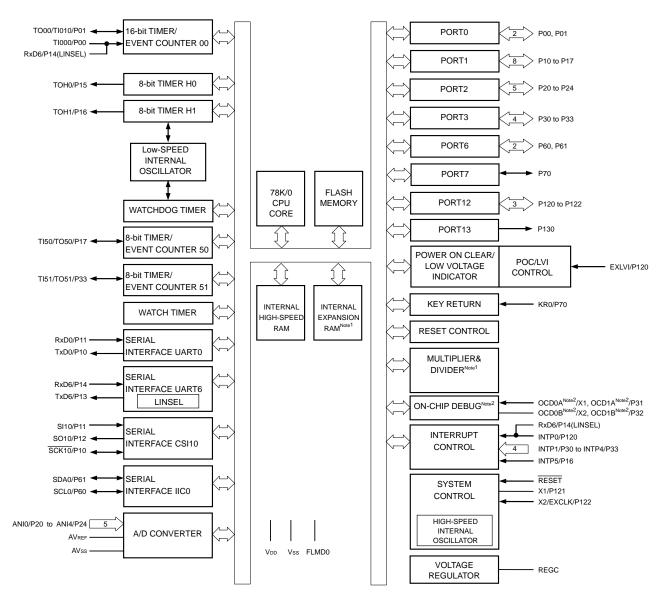
<R> 64-pin plastic WQFN (fine-pitch) (9×9)

Note µPD78F8077D (with on-chip debug function) only

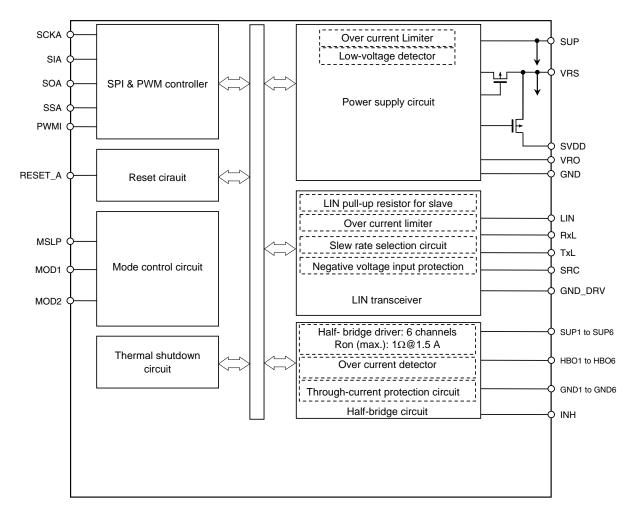

Cautions	1. Make GND, GND1 to GND6, and GND_DRV the same potential as Vss and AVss.
	2. Connect the REGC pin to Vss via a capacitor (0.47 μ F to 1 μ F).
<r></r>	3. ANI0/P20 to ANI4/P24 are in the analog input mode after reset release.
	4. Make SUP the same potential as SUP1 to SUP6.
<r></r>	5. Make VDD the same potential as VRS or VRO when the on-chip P-ch MOS is used for the 5-V output dropper.
<r></r>	6. Make VDD the same potential as VRS when the external dropper is used for the 5-V output dropper.

<R> Pin Identification

ANI0 to ANI4	: Analog Input	RxD0, RxD6	: Receive Data
AVREF	: Analog Reference Voltage	SCK10, SCL0	: Serial Clock Input/Output
AVss	: Analog Ground	SDA0	: Serial Data Input/Output
EXCLK	: External Clock Input (Main System	SI10	: Serial Data Input
EXOLIV	Clock)	SO10	: Serial Data Output
EXLVI	: External potential Input for	SRC	: Slew Rate Control Input
	Low-voltage detector	SUP	. Clew Hate Control Input
FLMD0	: Flash Programming Mode	SUP1 to SUP6	: Battery Power Supply
GND		SCKA	: Serial Clock Input
GND1 to GND6		SIA	: Serial Data Input
GND DRV	: Ground	SOA	: Serial Data Output
HBO1 to HBO6	: Half-bridge Driver Output	SSA	: Slave Select Input
IC	: Internal Connection	PWMI	: PWM Input
INTP0 to INTP5	: External Interrupt Input	TI000 TI010,	. i vin npac
KR0	: Key Return	TI50, TI51	: Timer Input
LIN	: LIN Bus	TO00, TO01,	
MOD1, MOD2	: Pin Mode Control Input	TO50, TO51,	
MSLP	: Sleep Mode Control Input	TOH0, TOH1	: Timer Output
OCD0A, OCD0B,		TxD0, TxD6	: Transmit Data
OCD1A, OCD1B	: On-Chip Debug Input/Output	INH	: Inhibit Input for Half-bridge Driver
P00, P01	: Port 0		Enable
P10 to P17	: Port 1	Vdd	: Power Supply
P20 to P24	: Port 2	VRO	: Voltage Regulator Output
P30 to P33	: Port 3	VRS	: Voltage Regulator Input
P60, P61	: Port 6	SVDD	: Voltage Regulator Output for
P70	: Port 7	External	Sensor device
P120 to P122	: Port 12	RESET A	: Analog chip Reset
P130	: Port 130	Vss	: Ground
REGC	: Regulator Capacitance	X1, X2	: Crystal Oscillator (Main System
RESET	: Reset	,	Clock)
-			/


<R> 1.5 Block Diagram

Note µPD78F8077D (with on-chip debug function) only


- Cautions 1. µPD78F807x is developed as an MCP (Multi-Chip Package) which includes two chips in the package, a microcontroller chip and an analog chip (power supply circuit, LIN transceiver, and half-bridge circuit).
 - The P10/SCK10/SCKA, P11/SI10/SOA, P12/SO10/SIA, P13/TxD6/TxL, P14/RxD6/RxL, P15/TOH0/PWMI, P16/TOH1/INTP5/SSA, and P17/TI50/TO50/INH pins are connected inside the package.

<R> 1.5.1 Microcontroller Block Diagram

Notes 1. Only supported by the products with 48-Kbyte or more flash memory.
2. μPD78F8077D (with on-chip debug function) only.

<R> 1.5.2 Analog Block Diagram

1.6 Outline of Functions

	Ite	m	µPD78F8071	µPD78F8072	µPD78F8073	µPD78F8074	µPD78F8075	µPD78F8077
Flash mer	Flash memory (KB) High-Speed RAM		16	24	32	48	60	128
High-Spe	ed RAM		768 bytes 1 Kbyte					
Expansior	n RAM (KB)			- 1 2				6
Bank (flas	h memory)				-			6
Power su	oply voltage				V _{DD} = 1.	8 to 5.5 V		
Regulator					Inc	luded		
Minimum	instruction e	execution time		0.1 μs (20 MH	z: V _{DD} = 2.7 to 5.5 V	//0.4 μs (5 MHz: Vi	op = 1.8 to 5.5 V)	
Clock	Main	High-speed system		20 MHz: V_{DD} = 2.7 to 5.5 V/5 MHz: V_{DD} = 1.8 to 5.5 V				
		Internal high- speed oscillation			8 MHz (TYP.):	V _{DD} = 1.8 to 5.5 V		
	Internal oscillati	low-speed on			240 kHz (TYP.):	$V_{DD} = 1.8 \text{ to } 5.5 \text{ V}$		
Port	Total				20	3 ch		
	N-ch O.	.D. (6 V tolerance)	2 ch					
Timer	16 bits	(TM0)	1 ch					
	8 bits (1	FM5)	2 ch					
	8 bits (1	ГМН)	2 ch					
	Watch		1 ch					
	WDT		1 ch					
Serial	UART/3	3-wire CSI Note	1 ch					
interface	UART s	supporting LIN-bus	1 ch					
	I ² C bus				1	ch		
10-bit A/D					5	ch		
Interrupt	Externa	al	7					
	Interna	1				16		
Key interr	-					-		
Reset	RESET	pin	Provided					
	POC		1.59 V±0.15 V					
	LVI		The detection level of the supply voltage is selectable.					
	WDT				Pro	vided		
Multiplier/				Not provided			Provided	
On-chip d	ip debug function				Not provided P			

Note Select either of these functions since they share the same pins.

ltem	µPD78F8071	µPD78F8072	µPD78F8073	µPD78F8074	µPD78F8075	µPD78F8077D	
Power Supply	 Includes P-ch MOS for dropper Output voltage: 5 V ± 3% (operating voltage range: 6 to 19 V, output current: 50 mA or less) 						
	 On-chip external-dropper (NPN transistor) auxiliary function Output voltage: 5 V ± 3% (operating voltage range: 7 to 19 V, output current: 150 mA or less) 						
	On-chip power	r supply output fun	ction for external se	ensors			
On-chip over current protection circuit							
Low-voltage detector							
LIN transceiver	Complies with LIN Specifications Rev.2.0, 2.1						
	Sleep function supported						
	On-chip slew rate select function						
	On-chip pull-up resistors for slave applications						
	On-chip LIN driver current protection circuit						
Driver	Half-bridge driver: 6 channels						
	On-chip over current limiter						
On-chip through-current protection circuit							
SPI & PWM controller	1 ch	1 ch					
Overheat protection circuit	1 ch						

An outline of the timer is shown below.

		16-Bit Timer/ Event Counter 00	Event C	Timer/ Counters nd 51	8-Bit Timers H0 and H1		Watch Timer	Watchdog Timer
		TM00	TM50	TM51	TMH0	TMH1		
Function	Interval timer	1 channel	1 channel	1 channel	1 channel	1 channel	-	-
	External event counter	1 channel	1 channel	1 channel	-	-	-	-
	PPG output	1 output	-	-	-	-	-	-
	PWM output	-	1 output	1 output	1 output	1 output	-	-
	Pulse width measurement	2 input	-	-	-	-	-	-
	Square-wave output	1 output	1 output	1 output	1 output	1 output	-	-
	Carrier generator	-	-	-	-	1 output ^{Note}	-	-
	Watch Timer	-	-	-	-	-	-	-
	Watchdog timer	-	-	-	-	-	-	1 channel
Inte	errupt source	2	1	1	1	1	-	-

Note TM51 and TMH1 can be used in combination as a carrier generator mode.

2. Pin Functions

The differences in microcontroller pin functions between the μ PD78F807x and 78K0/KC2 are as follows.

μPD	78F807x	78K0/KC2 μPD78F0511A, 78F0512A, 78F0513A, 78F0514A, 78F0515A, 78F0517DA			
Pin name	Alternate function	Pin name	Alternate function		
P10	SCK10/TxD0/SCKA	P10	SCK10/TxD0		
P11	SI10/RxD0/SOA	P11	SI10/RxD0		
P12	SO10/SIA	P12	SO10		
P13	TxD6/TxL	P13	TxD6		
P14	RxD6/RxL	P14	RxD6		
P15	TOH0/PWMI	P15	TOH0		
P16	TOH1/INTP5/SSA	P16	TOH1/INTP5		
P17	TI50/TO50/INH	P17	TI50/TO50		
P20 to P24	ANI0 to ANI4	P20 to P27	ANI0 to ANI7		
-	-	P40 to P41	-		
-	-	P62	EXSCL0		
-	-	P63	-		
P70	KR0	P70 to P73	KR0 to KR3		
-	-	P74, P75	-		
-	-	P123	XT1		
-	-	P124	XT2/EXCLKS		
-	-	P140	PCL/INTP6		

<R> (1) Port and alternate function pins

2.1 Microcontroller Block Pin Functions

There are two types of pin I/O buffer power supplies: AVREF, and VDD. The relationship between these power supplies and the pins are shown below.

<R> Table 2-1. Pin I/O Buffer Power Supplies

Power Supply	Corresponding Pins		
AVREF	P20 to P24		
VDD	Pins other than P20 to P24		

(1) Port pins (1/2)

	Function Name	I/O	Function	After Reset	Alternate Function
	P00	I/O	Port 0. 2-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software setting.	Input	TI000
	P01			port	TI010/TO00
	P10	I/O	Port 1.	Input	SCK10/TxD0/SCKA ^{Note1}
	P11		8-bit I/O port. Input/output can be specified in 1-bit units.	port	SI10/RxD0/SOA Note1
	P12		Use of an on-chip pull-up resistor can be specified by software setting.		SO10/SIA Note1
	P13				TxD6/TxL Note1
	P14				RxD6/RxL Note1
	P15				TOH0/PWMI Note1
	P16				TOH1/INTP5/SSA Note1
	P17				TI50/TO50/INH Note1
<r></r>	P20 to P24	I/O	Port 2. 5-bit I/O port. Input/output can be specified in 1-bit units.	Analog input	ANI0 to ANI4
<r></r>	P30	I/O	Port 3.	Input	INTP1
	P31		 4-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software setting. 	port	INTP2/OCD1A Note2
	P32				INTP3/OCD1B Note2
	P33	1			INTP4/TI51/TO51

Notes 1. Analog pin functions. This pin is connected to a function pin of the analog part inside the package.

2. μPD78F8077D only.

(1) Port pins (2/2)

	nction Iame	I/O	Function	After Reset	Alternate Function
P6	0	I/O	Port 6.	Input	SCL0
P6	1		2-bit I/O port (N-ch open-drain). Input/output can be specified in 1-bit units.	port	SDA0
P70	0	I/O	Port 7. 1-bit I/O port. Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by software setting.	Input port	KR0
P1:	20	I/O	Port 12.	Input	INTP0/EXLVI
P12	21		3-bit I/O port. Input/output can be specified in 1-bit units.	port	X1/OCD0A Note
P1:	22		Only for P120, use of an on-chip pull-up resistor can be specified by software setting.		X2/EXCLK/OCD0B Not
> P1;	30	Output	Port 13. 1-bit output only port.	Output port	-

Note µPD78F8077D only.

(2) Non-port functions (1/2)

	nction Iame	I/O	Function	After Reset	Alternate Function
> ANI ANI		Input	A/D converter analog input	Analog input	P20 to P24
EXL	VI	Input	Potential input for external low-voltage detection	Input port	P120/INTP0
FLM	/ID0	-	Flash memory programming mode setting	-	-
INTE	P0	Input	External interrupt request input for which the valid edge (rising	Input port	P120/EXLVI
> INTE	P1		edge, falling edge, or both rising and falling edges) can be specified		P30
INTE	P2		specified		P31/OCD1A Note2
INTE	P3				P32/OCD1B Note2
INT	P4				P33/TI51/TO51
INTE	P5				P16/TOH1/SSA Note1
KR0	0	Input	Key interrupt input	Input port	P70
REG	GC	-	Connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect to Vss via a capacitor (0.47 to 1 μ F).	-	-
RES	SET	Input	System reset input	-	-
RxD	00	Input	Serial data input to UART0	Input port	P11/SI10/SOA Note1
RxD	D6	Input	Serial data input to UART6	Input port	P14/RxL Note1
SCK	K10	I/O	Clock input/output for CSI10	Input port	P10/TxD0/SCKA Note1
> SI10	0	Input	Serial data input from CSI10	Input port	P11/RxD0/SOA Note1
SO1	10	Output	Serial data output from CSI10	Input port	P12
SCL	L0	I/O	Clock input/output for IIC	Input port	P60
SDA	A0	I/O	Serial data I/O for IIC	Input port	P61
T100	00	Input	External count clock input to 16-bit timer/event counter 00 Capture trigger input to capture registers (CR000, CR010) of 16-bit timer/event counter 00	Input port	P00
TI01	10		Capture trigger input to capture register (CR000) of 16-bit timer/event counter 00		P01/TO00
TI50	0	Input	External count clock input to 8-bit timer/event counter 50	Input port	P17/TO50/INH Note1
TI51	1		External count clock input to 8-bit timer/event counter 51		P33/T051/INTP4
TOO	00	Output	16-bit timer/event counter 00 output	Input port	P01/TI010
TO5	50	Output	8-bit timer/event counter 50 output	Input port	P17/TI50/INH Note1
TO5	51		8-bit timer/event counter 51 output		P33/TI51/INTP4
TOF	H0		8-bit timer H0 output		P15/PWMI Note1
TOH	H1	1	8-bit timer H1 output	1	P16/INTP5/SSA Note1
TxD	00	Output	Serial data output from UART0	Input port	P10/SCK10/SCKA Note
TxD	06	Output	Serial data output from UART6	Input port	P13/TxL Note1

Notes 1. Analog pin functions. This pin is connected to a function pin of the analog part inside the package.

2. $\mu\text{PD78F8077D}$ only.

(2) Non-port functions (2/2)

Function Name	1/0	Function	After Reset	Alternate Function
X1	-	Main system clock resonator connection	Input port	P121/OCD0A Note
X2	-			P122/EXCLK/ OCD0B Note
EXCLK	Input	External clock input for main system clock	Input port	P122/X2
VDD	-	Positive power supply for pins other than P20 to P24	-	-
AVREF	-	A/D converter reference voltage input and positive power supply for P20 to P24 and A/D converter	-	-
Vss	-	Ground potential for pins other than P20 to P24	-	-
AVss	-	A/D converter ground potential. Make the same potential as $V_{\mbox{\scriptsize SS}.}$	-	-

Note: µPD78F8077D only.

2.2 Analog Part Pins

			(1/2)	
Function Name	I/O	Function		
SSA Note	Input	Slave select input		
PWMI Note	Input	External PWM input		
RxL ^{Note}	Output	Serial data output		
TxL ^{Note}	Input	Serial data input		
SIA ^{Note}	Input	Serial data input		
SOA ^{Note}	Output	Serial data output		
SCKA Note	Input	Clock input		
GND1	-	Ground potential for half-bridge channel 1		
HBO1	Output	Output for half-bridge channel 1		
SUP1	-	Power supply for half-bridge channel 1		
GND2	-	Ground potential for half-bridge channel 2		
HBO2	Output	Output for half-bridge channel 2		
SUP2	-	Power supply for half-bridge channel 2		
GND3	-	Ground potential for half-bridge channel 3		
HBO3	Output	Output for half-bridge channel 3		
SUP3	-	Power supply for half-bridge channel 3		
GND4	-	Ground potential for half-bridge channel 4		
HBO4	Output	Output for half-bridge channel 4		
SUP4	-	Power supply for half-bridge channel 4		
GND5	-	Ground potential for half-bridge channel 5		
HBO5	Output	Output for half-bridge channel 5		
SUP5	-	Power supply for half-bridge channel 5		
GND6	-	Ground potential for half-bridge channel 6	Ground potential for half-bridge channel 6	
HBO6	Output	Output for half-bridge channel 6	Output for half-bridge channel 6	
SUP6	-	Power supply for half-bridge channel 6		

Note This pin is connected to the microcontroller pin functions inside the package.

Cautions 1. Make GND, GND1 to GND6, and GND_DRV the same potential as Vss and AVss. 2. Make SUP1 to SUP6 the same potential as SUP.

(2/2)

	Function Name	I/O	Function
<r></r>	SUP	-	Power supply connection
× ∧ ∕	SVDD	Output	Power supply output for external sensors
	VRO	Output	Power supply output or base control output for using external NPN transistor
	VRS	Input	Power supply and power-supply voltage monitor
	GND	-	Power supply circuit GND potential
	LIN	I/O	LIN Bus connection pin
	GND_DRV	-	LIN transceiver circuit GND
	MOD1, MOD2	Input	Pin mode control input
	MSLP	Input	Sleep mode selection
	SRC	Input	Slew rate control input
	RESET_A	Input	Reset input to the analog chip side
	INH ^{Note}	Input	Half-bridge output-disable input

Note This pin is connected to the microcontroller pin functions inside the package

Cautions 1. Make GND, GND1 to GND6, and GND_DRV the same potential as Vss and AVss.

- 2. Make SUP1 to SUP6 the same potential as SUP.
- < R> 3. Make VDD the same potential as VRS or VRO when the on-chip P-ch MOS is used for the 5-V output dropper.

< R> 4. Make VDD the same potential as VRS when the external dropper is used for the 5-V output dropper.

2.3 Description of Pin Functions

2.3.1 P00, P01 (Port 0)

P00 and P01 are a 2-bit I/O port. These pins also function as timer I/O.

The following operation modes can be specified in 1-bit units.

(1) **Port mode**

P00 and P01 function as a 2-bit I/O port. These pins can be set to input or output port in 1-bit units using port mode register 0 (PM0). An on-chip pull-up resistor can be used by setting the pull-up resistor option register 0 (PU0).

(2) Control mode

P00 and P01 function as timer I/O pins.

(a) **TI000**

Functions as the external count clock input pin to 16-bit timer/event counter 00 and capture trigger signal input pin to the capture registers (CR000, CR010) of 16-bit timer/event counter 00.

(b) **TI010**

Functions as the capture trigger signal input pin to the capture register (CR000) of 16-bit timer/event counters 00 and 01.

(c) **TO00**

Functions as the timer output pin for 16-bit timer/event counter 00.

2.3.2 P10 to P17 (Port 1)

P10 to P17 are an 8-bit I/O port. These pins also function as external interrupt request input, serial interface data I/O, clock I/O, and timer I/O pins.

The following operation modes can be specified in 1-bit units.

(1) **Port mode**

P10 to P17 function as an 8-bit I/O port. These pins can be set to input or output port in 1-bit units using port mode register 1 (PM1). An on-chip pull-up resistor can be used by setting the pull-up resistor option register 1 (PU1).

(2) Control mode

P10 to P17 function as the external interrupt request input, serial interface data I/O, clock I/O, and timer I/O pins.

(a) SI10

Functions as the serial data input pin for the serial interface CSI10.

(b) SO10

Functions as the serial data output pin for the serial interface CSI10.

(c) **SCK10**

Functions as the serial clock I/O pin for the serial interface CSI10.

(d) **RxD0**

Functions as the serial data input pin for the serial interface UART0.

(e) RxD6

Functions as the serial data input pin for the serial interface UART6.

(f) **TxD0**

Functions as the serial data output pin for the serial interface UARTO.

(g) TxD6

Functions as the serial data output pin for the serial interface UART6.

(h) TI50

Functions as the external count clock input pin for the 8-bit timer/event counter 50.

(i) TO50

Functions as the timer output pin for the 8-bit timer/event counter 50.

(j) TOH0, TOH1

Function as the timer output pins for the 8-bit timers H0 and H1.

(k) INTP5

Functions as the external interrupt request input pin for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

<R> 2.3.3 P20 to P24 (Port 2)

P20 to P24 are an 5-bit I/O port. These pins also function as A/D converter analog input pins.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P20 to P24 function as an 5-bit I/O port. These pins can be set to input or output port in 1-bit units using port mode register 2 (PM2).

(2) Control mode

P20 to P24 function as the A/D converter analog input pins (ANI0 to ANI4). When using these pins as analog input pins, see 13.6 Cautions for A/D Converter in 78K0/Kx2 User's Manual (R01UH0008E).

(a) ANI0 to ANI4

Functions as the A/D converter analog input pins.

Caution ANI0/P20 to ANI4/P24 are set to analog input mode after a reset is released.

2.3.4 P30 to P33 (port 3)

P30 to P33 are a 4-bit I/O port. These pins also function as external interrupt request input and timer I/O pins.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P30 to P33 function as a 4-bit I/O port. These pins can be set to input or output port in 1-bit units using port mode register 3 (PM3). An on-chip pull-up resistor can be used by setting the pull-up resistor option register 3 (PU3).

(2) Control mode

P30 to P33 function as the external interrupt request input and timer I/O pins.

(a) INTP1 to INTP4

Function as the external interrupt request input pins for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) **TI51**

Functions as the external count clock input pin to 8-bit timer/event counter 51.

(c) TO51

Functions as the timer output pin from 8-bit timer/event counter 51.

Cautions 1. In µPD78F8077D (a product with the on-chip debug function), be sure to pull down the P31/INTP2/OCD1A pin before reset release to prevent malfunction.

2. When the flash memory programmer or on-chip debug emulator is connected but the P31/INTP2/OCD1 pin in a product with the on-chip debug function (μ PD78F8077D) is not used, this pin should be handled as follows:

			P31/INTP2/OCD1A
Flash memory programmer connected			Connect to Vss via a resistor.
On-chip debug emulator connected (when P31/INTP2/OCD1A is not used as on-chip debug mode setting pin)		During reset	
		When a reset is released	Input: Connect to VDD or Vss via a resistor. Output: Leave open.
Remarks In μPD78F8077D (a product with the on-chip debug function), P31 and P32 can be used as on-chip debug mode setting pins (OCD1A, OCD1B) when the on-chip debug function is used. For the			

2.3.5 P60 to P61 (port 6)

P60 and P61 are a 2-bit I/O port. These pins also function as serial interface data I/O and clock I/O pins.

The following operation modes can be specified in 1-bit units.

(1) Port mode

P60 and P61 function as a 2-bit I/O port. These pins can be set to input or output port in 1-bit units using port mode register 6 (PM6).

Output of P60 and P61 is N-ch open-drain output (6 V tolerance).

(2) Control mode

P60 and P61 function as serial interface data I/O and clock I/O pins.

(a) SDA0

Functions as the serial data I/O pin for the serial interface IICO.

(b) **SCL0**

Functions as the serial clock I/O pin for the serial interface IIC0.

2.3.6 P70 (port 7)

P70 is a 1-bit I/O port. This pin also functions as a key interrupt input pin.

The following operation modes can be specified.

(1) **Port mode**

P70 functions as a 1-bit I/O port. This pin can be set to input or output port using port mode register 7 (PM7). An onchip pull-up resistor can be used by setting the pull-up resistor option register 7 (PU7).

(2) Control mode

P70 functions as the key interrupt input pin.

(a) KR0

Functions as the key interrupt input pin.

2.3.7 P120 to P122 (port 12)

P120 to P122 are a 3-bit I/O port. These pins also function as external interrupt request input, external low-voltage detection potential input, main system clock resonator connection, and main system clock external clock input pins. The following operation modes can be specified in 1-bit units.

(1) **Port mode**

P120 to P122 function as a 3-bit I/O port. These pins can be set to input or output port using port mode register 12 (PM12). Only for P120, an on-chip pull-up resistor can be used by setting the pull-up resistor option register 12 (PU12).

(2) Control mode

P120 to P122 function as pins for the external interrupt request input, potential input for external low-voltage detection, connecting resonator for main system clock, and external clock input for main system clock.

(a) INTP0

Functions as the external interrupt request input pin (INTP0) for which the valid edge (rising edge, falling edge, or both rising and falling edges) can be specified.

(b) EXLVI

Functions as the potential input pin for external low-voltage detection.

(c) X1, X2

Function as the resonator connection pins for the main system clock.

(d) EXCLK

Functions as the external clock input pin for the main system clock.

Caution When the flash memory programmer or on-chip debug emulator is connected but the P121/X1/OCD0A pin in a product with the on-chip debug function (µPD78F8077D) is not used, this pin should be handled as follows:

		P121/X1/OCD0A
Flash memory programmer connected		Connect to Vss via a resistor.
On-chip debug emulator connected (when P121/X1/OCD0A is not used as on-chip debug mode setting pin)	During reset	
	When a reset is released	Input: Connect to VDD or Vss via a resistor. Output: Leave open.

Remarks In μPD78F8077D (a product with the on-chip debug function), P121 and P122 can be used as on-chip debug mode setting pins (OCD0A, OCD0B) when the on-chip debug function is used. For the connection to the in-circuit emulator supporting on-chip debugging (QB-78K0MINI), see CHAPTER 28 ON-CHIP DEBUG FUNCTION in 78K0/Kx2 User's Manual (R01UH0008E).

<R> 2.3.8 P130 (port 13)

P130 functions as an output-only port.

Remark When the device is reset, P130 outputs a low level. Therefore, to output a high level from P130 before the device is reset, the output signal of P130 can be used as a pseudo reset signal of the CPU (see the figure for Remark in 5.2.10 Port 13 in 78K0/Kx2 User's Manual (R01UH0008E)).

2.3.9 AVREF, AVSS, VDD, VSS

(a) AVREF

<R> AVREF is the A/D converter reference voltage input pin and the positive power supply pin for P20 to P24 and A/D converter.

When the A/D converter is not used, connect this pin directly to VDD^{Note}.

Note Make the AVREF pin the same potential as the VDD pin when port 2 is used as a digital port.

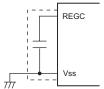
(b) AVss

AVss is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with the same potential as the Vss pin.

(c) Vdd

<R> VDD is the positive power supply pin for the pins other than P20 to P24.

(d) Vss


<R> Vss is the ground potential pin for the ports other than P20 to P24.

2.3.10 RESET

RESET is the active-low system reset input pin.

2.3.11 REGC

REGC is the pin for connecting regulator output (2.5 V) stabilization capacitance for internal operation. Connect this pin to Vss via a capacitor (0.47 to 1 μ F).

Caution Keep the wiring length as short as possible for the broken-line part in the above figure.

2.3.12 FLMD0

FLMD0 is the flash memory programming mode setting pin. Connect FLMD0 to Vss during the normal operation mode. In the flash memory programming mode, connect this pin to the flash programmer.

2.3.13 HBO1 to HBO 6

HBO1 to HBO6 are the half-bridge driver output pins. Half-bridge driver output is controlled by the SPI & PWM controller. For details, see chapter 7 Half-Bridge Circuit.

2.3.14 SUP1 to SUP6

SUP1 to SUP6 are the half-bridge driver power supply pins. Make SUP1 to SUP6 the same potential as the SUP pin potential.

2.3.15 GND, GND1 to GND6, GND_DRV

GND is the ground potential pin for the power supply circuit. GND1 to GND6 are the half-bridge circuit ground potential pins. GND_DRV is the LIN transceiver ground potential pin. GND, GND1 to GND6, and GND_DRV potentials should be the same.

2.3.16 RESET_A

RESET_A is the active-low reset input pin for the analog chip.

2.3.17 LIN

LIN is the LIN Bus connection pin.

2.3.18 MSLP

MSLP is the mode transition acceptance pin.

In the normal mode the analog chip function block goes into the sleep mode when MSLP is set to low, and in the sleep mode the analog chip function block goes into the normal mode when MSLP is set to high.

MSLP is internally pulled down.

For detail, see chapter 6.2 Operating Modes.

2.3.19 SUP

SUP is the power supply pin.

<R>

2.3.20 MOD1, MOD2

MOD1 and MOD2 are the port mode select pins.

For details, see chapter 6.1 LIN Transceiver Function.

2.3.21 VRO

VRO functions as the power supply circuit output pin when the internal P-ch MOS is used as the 5-V output dropper, and functions as the base control output pin when the external NPN transistor is used as the 5-V output dropper.

2.3.22 VRS

VRS is the power supply circuit input and output voltage monitor pin.

2.3.23 SVDD

SVDD is the power supply circuit output pin for external sensors.

For details, see chapter 5 Power Supply Circuit.

2.3.24 SRC

SRC is the LIN communication slew rate select pin.

For details, see chapter 6.1 LIN Transceiver Functions.

2.3.25 SCKA

SCKA is the SPI & PWM controller clock input pin.

2.3.26 SOA

SOA is the SPI & PWM controller serial data output pin.

2.3.27 SIA

SIA is the SPI & PWM controller serial data input pin.

2.3.28 SSA

SSA is the SPI & PWM controller slave select input pin.

2.3.29 PWMI

PWMI is the SPI & PWM controller external PWM input pin.

2.3.30 INH

INH is the half-bridge circuit output-disable control input pin.

For details, see chapter 7 Half-Bridge Circuit.

<R> 2.3.31 IC

IC is the internal connection pin.

2.4 Pin I/O Circuits and Recommended Connection of Unused Pins

Table 2-3 shows the types of pin I/O circuits and the recommended connections of unused pins.

Refer to Figure 2-1 for the I/O circuit configuration of each type.

	Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin
Ē	P00/T1000	5-AQ	I/O	Input: Connect independently to VDD or Vss via a resistor.
Ē	P01/TI010/TO00			Output: Leave open.
	P10/SCK10/TxD0/ SCKA Note2			
ľ	P11/SI10/RxD0/SOA Note2	-		
Ī	P12/SO10/SIA Note2	5-AG		
Ē	P13/TxD6/TxL Note1			
	P14/RxD6/RxL ^{Note1}	5-AQ		
Ē	P15/TOH0/PWMI Note2	5-AG		
	P16/TOH1/INTP5/ SSA ^{Note2}	5-AQ		
Ī	P17/TI50/TO50/INH Note2	5-AQ		Input/output: Connect independently to Vss via a resistor.
<>	P20/ANI0 to P24/ANI4 ^{Note3}	11-G		<digital analog="" input="" or="" setting=""> Connect independently to AVREF or AVss via a resistor. <digital output="" setting=""> Leave open.</digital></digital>
≀ >	P30/INTP1	5-AQ	1	Input: Connect independently to VDD or VSS via a resistor.
Ē	P31/INTP2	5-AQ	1	Output: Leave open.
Ī	P32/INTP3	1		
Ē	P33/TI51/TO51/INTP4	1		

Notes 1. This pin also has the LIN transceiver function. When this pin is used as the LIN transceiver function pin, leave it open.

2. Analog part pin functions. This pin is connected to an analog part pin function inside the package.

3. P20/ANI0 to P24/ANI4 enter the analog input mode after a reset is released.

<R>

<R> Table 2-3. Pin I/O Circuit Types (2/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin
P60/SCL0	13-AI	I/O	Input: Connect to Vss.
P61/SDA0			Output: Leave this pin open at low-level output after clearing
			the output latch of the port to 0.
P70/KR0	5-AQ		Input: Connect independently to VDD or VSS via a resistor.
P120/INTP0/EXLVI			Output: Leave open.
P121/X1 Note1	37	I/O	Input: Connect independently to VDD or Vss via a resistor.
P122/X2/EXCLK Note1			Output: Leave open.
P130	3-C	Output	Leave open.
RESET	2	Input	Connect to VDD directly or via a resistor.
FLMD0 Note4	38-A	-	Connect to Vss.
AVREF	-	-	Connect directly to VDD ^{Note3} .
AVss			Connect directly to Vss.
MOD1	LIN-1	Input	Connect directly to Vss or VRS.
MOD2			
SRC		Input	Connect directly to Vss or VRS.
SCKA Note3	LIN-1-C	Input	Leave open.
SOA Note3	LIN-2	Output	Leave open.
SIA Note3	LIN-1-C	Input	Leave open.
SSA Note3	LIN-1-D	Input	Leave open.
PWMI Note3	LIN-1-C	Input	Leave open.
INH Note3	LIN-1-D	Input	Leave open.
LIN	LIN-3	I/O	Leave open.
MSLP	LIN-1-A	Input	Leave open.

Notes 1. Set the I/O port mode with the clock operating mode select register (OSCCTL) and use the recommended connection method described above when these pins are not used.

2. Make this pin the same potential as the V_{DD} pin when port 2 is used as a digital port.

3. These pins are connected to the microcontroller pin functions inside the package.

4. FLMD0 is a pin that is used to write data to the flash memory. To rewrite the data of the flash memory on-board, connect this pin to Vss via a resistor (10 kΩ: recommended). The same applies when executing on-chip debugging with a product with an on-chip debug function (µPD78F8077D).

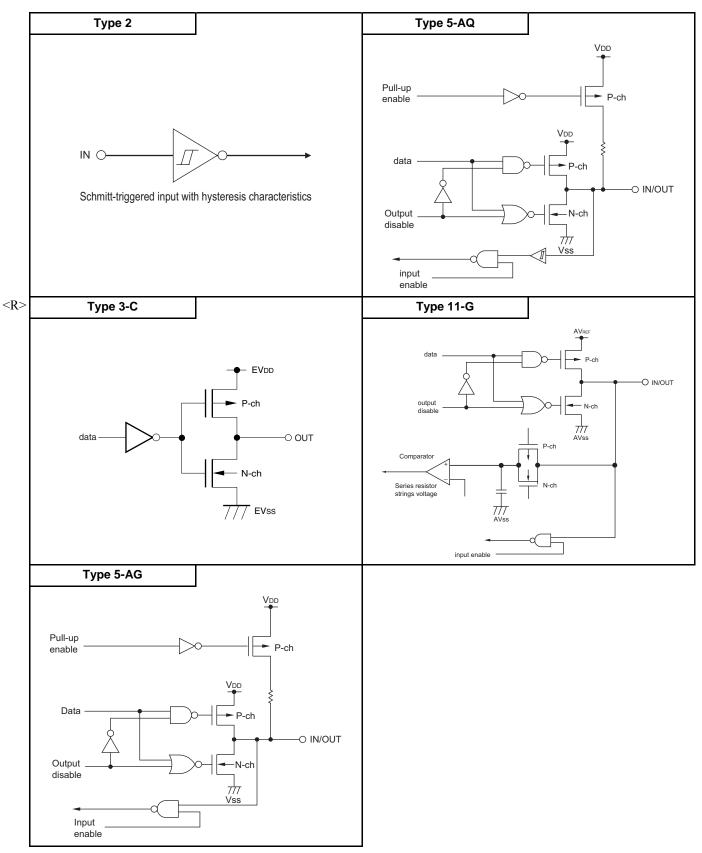

<R>

Table 2-3. Pin I/O Circuit Types (3/3)

	Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pin
	HBO1	LIN-4	Output	Leave open.
	HBO2			
	HBO3			
	HBO4			
	HBO5			
<r></r>	HBO6			
×π∕-	VRO	LIN-5	Output	Connect directly to VDD.
	VRS		Input	Connect directly to VRO.
	RxL	LIN-2	Output	Note
	TxL	LIN-6	Input	Note
	SVDD	LIN-5	Output	Leave open.
	RESET_A	LIN-1-B	Input	Connect directly to VRS.

Note These pins are connected to the microcontroller pin functions inside the package.

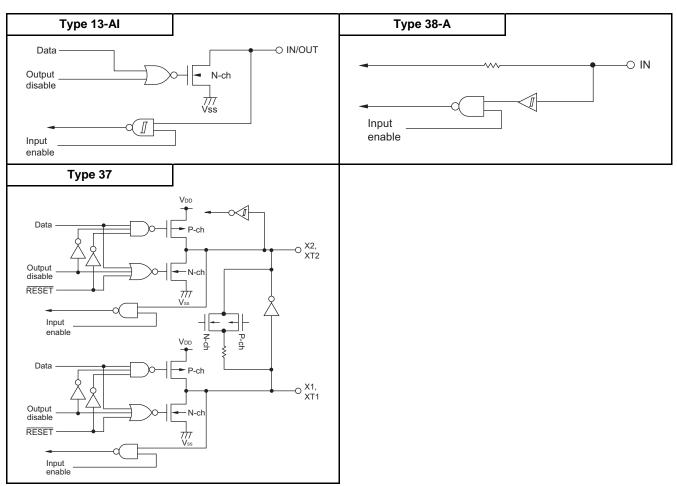
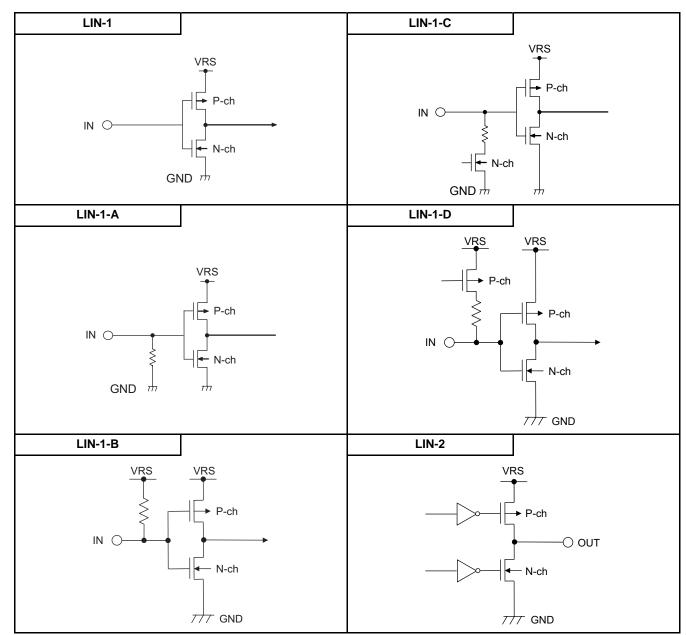
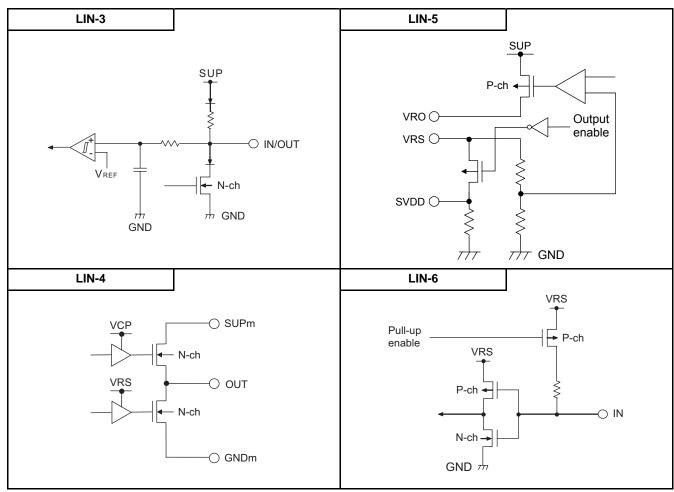



Figure 2-1. Pin I/O Circuit List (2/4)


Figure 2-1. Pin I/O Circuit List (3/4)

RENESAS

Figure 2-1. Pin I/O Circuit List (4/4)

Remark m = 1 to 6

3. Microcontroller Functions

The 78K0/KC2 is used for the 8-bit microcontroller block. The supported functions of the μ PD78F807x are different from those of the 78K0/KC2 because some of the 78K0/KC2 function pins are not available externally.

This manual describes the differences in functions and registers between the µPD78F807x and 78K0/KC2.

For a description of each function of the microcontroller block, see the 78K0/Kx2 User's Manual (R01UH0008E).

3.1 Differences in Functions between µPD78F807x and 78K0/KC2

The functional differences between the μ PD78F807x and 78K0/KC2 (48 pins) are as follows.

	lt	em	μPD78F807x	78K0/KC2 (48 pins) μPD78F0511A, 78F0512A, 78F0513A 78F0514A, 78F0515A, 78F0517DA			
	Subsystem cl (oscillation fre		-	XT1 (crystal) oscillation External subsystem clock input (EXCLKS) 32.768 kHz (TYP.) : VDD = 1.8 to 5.5 V			
-	I/O ports		<u>Total: 26</u> CMOS I/O: 24 N-ch open-drain I/O (6-V tolerance): 2	<u>Total: 41</u> CMOS I/O: 37 N-ch open-drain I/O (6-V tolerance): 4			
	Clock output		-	 156.25 kHz, 312.5 kHz, 625 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (peripheral hardware clock: fPRs = 20 MHz operation) 32.768 kHz (subsystem clock: fsub = 32.768 kHz operation) 			
<r></r>	A/D converte	r	10-bit resolution x 5 channels (AV _{REF} = 2.3 to 5.5 V)	10-bit resolution x 8 channels (AVREF = 2.3 to 5.5 V)			
Ī	Vectored Internal		16	16			
	interrupt sources	External	7	8			
	Key interrupt		Key interrupt (INTKR) occurs when the falling edge of the key input pin (KR0) is detected.	Key interrupt (INTKR) occurs when the falling edge of the key input pin (KR0 to KR3) is detected.			

3.2 Differences in Special Function Registers between µPD78F807x and 78K0/KC2

The differences in special function registers between the µPD78F807x and 78K0/KC2 (48 pins) are as follows.

ſ	Address	μPD78F807x		78K0/KC2 μPD78F0511A, 78F0512A, 78F0513A 78F0514A, 78F0515A, 78F0517DA				
		Special Function Register (SFR) Name	Symbol	Special Function Register (SFR) Name	Symbol			
Ī	FF02H	Port register 2 Note 1	P2	Port register 2	P2			
Ē	FF04H	_Note 2	-	Port register 4	P4			
Ī	FF06H	Port register 6 Note 1	P6	Port register 6	P6			
Ē	FF07H	Port register 7 Note 1	P7	Port register 7	P7			
₹>	FF0CH	Port register 12 Note 1	P12	Port register 12	P12			
\sim	FF0EH	_Note 2	-	Port register 14	P14			
Ē	FF22H	Port mode register 2 Note 1	PM2	Port mode register 2	PM2			
Ē	FF24H	Port mode register 4 Note 1	PM4	Port mode register 4	PM4			
Ē	FF26H	Port mode register 6 Note 1	PM6	Port mode register 6	PM6			
	FF27H	Port mode register 7 Note 1	PM7	Port mode register 7	PM7			
Ī	FF29H	Analog input channel specification register	ADS	Analog input channel specification register	ADS			
Ī	FF2CH	Port mode register 12 Note 1	PM12	Port mode register 12	PM12			
	FF2EH	Port mode register 14 Note 1	PM14	Port mode register 14	PM14			
	FF2FH	A/D port configuration register Note 1	ADPC	A/D port configuration register	ADPC			
\ >	FF34H	Pull up resistor option register 4 Note 1	PU4	Pull up resistor option register 4	PU4			
	FF37H	Pull-up resistor option register 7 Note 1	PU7	Pull up resistor option register 7	PU7			
₹>	FF3EH	Pull up resistor option register 14 Note 1	PU14	Pull up resistor option register 14	PU14			
	FF40H	_Note 2	-	Clock output selection register	CKS			
	FF48H	External interrupt rising edge enable register ^{Note 1}	EGP	External interrupt rising edge enable register	EGP			
	FF49H	External interrupt falling edge enable register ^{Note 1}	EGN	External interrupt falling edge enable register	EGN			
ľ	FF6EH	Key return mode register ^{Note 1}	KRM	Key return mode register	KRM			
	FF6FH	Watch timer operation mode register	WTM	Watch timer operation mode register	WTM			
ľ	FF9FH	9FH Clock operation mode selection register ^{Note 1}		Clock operation mode selection register	OSCCTL			
ľ	FFA8H	IIC clock selection register 0 ^{Note 1}	IICCL0	IIC clock selection register 0	IICCL0			

Notes 1. There are differences in bit setting.

2. Be sure not to write to this register.

	Γ			I		(2/2)	
Address	μPD78F807x		78K0/KC2 μPD78F0511A, 78F0512A, 78F0513A 78F0514A, 78F0515A, 78F0517DA				
	Special Function Register (SFR) Name	Sy	mbol	Special Function Register (SFR) Name	Sy	Symbol	
FFE2H	Interrupt request flag register 1L ^{Note}	IF1	IF1L	Interrupt request flag register 1L	IF1	IF1L	
FFE6H	Interrupt mask register 1L Note	MK1	MK1L	Interrupt mask register 1L	MK1	MK1L	
FFEAH	Priority specification flag register 1L ^{Note}	PR1	PR1L	Priority specification flag register 1L	PR1	PR1L	
FFFBH	Processor clock control register ^{Note}	PCC		Processor clock control register	PCC	•	

Note There are differences in bit setting.

3.3 Differences in Register Bit Settings between µPD78F807x and 78K0/KC2

3.3.1 Port mode register

µPD78F807x

	Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
<r></r>	PM2	1	1	1	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
	PM4	1	1	1	1	1	1	PM41	PM40	FF24H	FFH	R/W
	PM6	1	1	1	1	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
	PM7	1	1	PM75	PM74	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
	PM12	1	1	1	PM124	PM123	PM122	PM121	PM120	FF2CH	FFH	R/W
	PM14	1	1	1	1	1	1	1	PM140	FF2EH	FFH	R/W
< D >	Continue	4 0:			بربا مامل بربا م	and the A						

<R> Cautions 1. Bits 5 to 7 in PM2 should always be 1.

2. Bits 2 to 7 in PM4 should always be 1. Bits 0 and 1 in PM4 should always be 0.

3. Bits 4 to 7 in PM6 should always be 1. Bits 2 and 3 in PM6 should always be 0.

4. Bits 6 and 7 in PM7 should always be 1. Bits 1 to 5 in PM7 should always be 0.

5. Bits 5 to 7 in PM12 should always be 1. Bits 3 and 4 in PM12 should always be 0.

6. Bits 1 to 7 in PM14 should always be 1. Bit 0 in PM14 should always be 0.

78K0/KC2

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM2	PM27	PM26	PM25	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
PM4	1	1	1	1	1	1	PM41	PM40	FF24H	FFH	R/W
PM6	1	1	1	1	PM63	PM62	PM61	PM60	FF26H	FFH	R/W
PM7	1	1	PM75	PM74	PM73	PM72	PM71	PM70	FF27H	FFH	R/W
PM12	1	1	1	PM124	PM123	PM122	PM121	PM120	FF2CH	FFH	R/W
PM14	1	1	1	1	1	1	1	PM140	FF2EH	FFH	R/W

R/W

R/W R/W

R/W

R/W

3.3.2 Port register

μPD78F807x

	Symbol	7	6	5	4	3	2	1	0	Address	After reset
<r></r>	P2	0	0	0	P24	P23	P22	P21	P20	FF02H	00H (output latch)
	P6	0	0	0	0	0	0	P61	P60	FF06H	00H (output latch)
	P7	0	0	0	0	0	0	0	P70	FF07H	00H (output latch)
	P12	0	0	0	0	0	P122	P121	P120	FF0CH	00H (output latch)
	Continue	4 Dite			بيرام مايير						

Cautions 1. Bits 6 and 7 in P2 should always be 0.

2. Bits 2 to 7 in P6 should always be 0.

3. Bits 1 to 7 in P7 should always be 0.

4. Bits 3 to 7 in P12 should always be 0.

78K0/KC2

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
P2	P27	P26	P25	P24	P23	P22	P21	P20	FF02H	00H (output latch)	R/W
P6	0	0	0	0	P63	P62	P61	P60	FF06H	00H (output latch)	R/W
P7	0	0	P75	P74	P73	P72	P71	P70	FF07H	00H (output latch)	R/W
P12	0	0	0	P124	P123	P122	P121	P120	FF0CH	00H (output latch)	R/W

3.3.3 Pull-up resistor option register

µPD78F807x

	Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
<r></r>	PU4	0	0	0	0	0	0	0	0	FF34H	00H	R/W
	PU7	0	0	0	0	0	0	0	PU70	FF37H	00H	R/W
<r></r>	PU14	0	0	0	0	0	0	0	0	FF3EH	00H	R/W
_	^	4		- ·	4 1 11		•					

<R> Cautions 1. Bits 0 to 7 in PU4 should always be 0.

2. Bits 1 to 7 in PU7 should always be 0.

3. Bits 0 to 7 in PU14 should always be 0.

78K0/KC2

<R>

	Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
<r></r>	PU4	0	0	0	0	0	0	PU41	PU40	FF34H	00H	R/W
	PU7	0	0	PU75	PU74	PU73	PU72	PU71	PU70	FF37H	00H	R/W
<r></r>	PU14	0	0	0	0	0	0	0	PU140	FF3EH	00H	R/W

3.3.4 Analog input channel specification register

µPD78F807x

Address: FF29H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1
ADS	0	0	0	0	ADS2	ADS1	ADS0

ADS2	ADS1	ADS0	Analog input channel specification
0	0	0	ANIO
0	0	1	ANI1
0	1	0	ANI2
0	1	1	ANI3
1	0	0	ANI4
1	0	1	Setting prohibited
1	1	0	Setting prohibited
1	1	1	Setting prohibited

Caution Bits 3 to 7 should always be 0.

78K0/KC2

<R>

Address: FF29H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1
ADS	0	0	0	0	ADS2	ADS1	ADS0

ADS2	ADS1	ADS0	Analog input channel specification
0	0	0	ANIO
0	0	1	ANI1
0	1	0	ANI2
0	1	1	ANI3
1	0	0	ANI4
1	0	1	ANI5
1	1	0	ANI6
1	1	1	ANI7

Caution Bits 3 to 7 should always be 0.

3.3.5 A/D port configuration register

µPD78F807x

Address: FF2FH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	0	0	ADPC2	ADPC1	ADPC0

<R>

ADPC2	ADPC1	ADPC0	A	Analog input(A	A) / Digital I/O	(D) Switchin	g		
			ANI4/P24	ANI3/P23	ANI2/P22	ANI1/P21	ANI0/P20		
0	0	0	А	А	А	А	А		
0	0	1	А	А	А	А	D		
0	1	0	А	А	А	D	D		
0	1	1	А	А	D	D	D		
1	0	0	А	D	D	D	D		
1	0	1	D	D	D	D	D		
C	ther than abov	/e		Setting prohibited					

Caution Bits 3 to 7 should always be 0.

78K0/KC2

Address: FF2FH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
ADPC	0	0	0	0	ADPC3	ADPC2	ADPC1	ADPC0

ADPC3	ADPC2	ADPC1	ADPC0		Analog input(A) / Digital I/O (D) Switching							
				ANI5 /P27	ANI4 /P26	ANI5 /P25	ANI4 /P24	ANI3 /P23	ANI2 /P22	ANI1 /P21	ANI0 /P20	
0	0	0	0	А	Α	Α	Α	А	А	A	А	
0	0	0	1	Α	Α	Α	Α	A	Α	Α	D	
0	0	1	0	A	A	A	A	A	A	D	D	
0	0	1	1	А	A	Α	A	A	D	D	D	
0	1	0	0	А	A	Α	A	D	D	D	D	
0	1	0	1	A	A	A	D	D	D	D	D	
0	1	1	0	A	A	D	D	D	D	D	D	
0	1	1	1	A	D	D	D	D	D	D	D	
1	0	0	0	D	D	D	D	D	D	D	D	
	Other than above						Setting p	rohibited		•	•	

3.3.6 External interrupt rising/falling edge enable register

µPD78F807x

Address: FF48H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0				
EGP	0	0	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0				
Caution Bits	Caution Bits 6 and 7 should always be 0.											

Address: FF49H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0			
EGN	0	0	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0			
Coution Rite	Caution, Rite 6 and 7 should always be 0										

Caution Bits 6 and 7 should always be 0.

78K0/KC2

Address: FF48H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
EGP	0	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0

Address: FF49H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
EGN	0	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0

3.3.7 Key return mode register

µPD78F807x

Address: FF6EH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0	
KRM	0	0	0	0	0	0	0	KRM0	
Courtiers Dite 4 to 7 should shure to 0									

Caution Bits 1 to 7 should always be 0.

78K0/KC2

Address: FF6EH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
KRM	0	0	0	0	KRM3	KRM2	KRM1	KRM0

3.3.8 Watch timer operation mode register

µPD78F807x

Address: FF6FH After reset: 00H R/W

Symbol	7	6	5	4	3	2	<1>	<0>		
WTM	0	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0		
Caution Bit 7 is a read-only bit and should be fixed to 0										

Caution Bit 7 is a read-only bit and should be fixed to 0.

78K0/KC2

Address: FF6FH After reset: 00H R/W

Symbol	7	6	5	4	3	2	<1>	<0>
WTM	WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0

WTM7		Watch timer count clock selection (fW)										
		fsuв= 32.768 kHz	fprs = 2 MHz	fprs = 5 MHz	fprs = 10 MHz	fprs = 20 MHz						
0	fprs/2 ⁷	-	15.625 kHz	39.062 kHz	78.125 kHz	156.25 kHz						
1	fsuв	32.768 k HZ			-							

Remarks

1. fw: Watch timer clock frequency (fprs/2⁷ or fsub)

2. fprs: Peripheral hardware clock frequency

3. fsub: Subsystem clock frequency

3.3.9 Clock operation mode select register

µPD78F807x

Address: FF9FH After reset: 00H R/W

Symbol	<7>	<6>	5	4	3	2	1	<0>		
OSCCTL	EXCLK	OSCSEL	0	0	0	0	0	AMPH		
Caution Dia 4 and 5 about delugue he 0										

Caution Bits 4 and 5 should always be 0.

78K0/KC2

Address: FF9FH After reset: 00H R/W

Symbol	<7>	<6>	<5>	<4>	3	2	1	<0>
OSCCTL	EXCLK	OSCSEL	EXCLKS	OSCSELS	0	0	0	AMPH

3.3.10 Processor clock control register

µPD78F807x

Address: FFFBH After reset: 01H R/W

Symbol	7	6	5	4	3	2	1	0				
PCC	0	0 0 0 0 0 0 PCC2 PCC1 PCC0										
Cautions	1. Bit 5 is a rea	. Bit 5 is a read-only bit.										
	2. Bits 4 and 6	2. Bits 4 and 6 should always be 0.										
78K0/KC2												

Address: FFFBH After reset: 01H R/W

Symbol	7	6	<5>	<4>	3	2	1	0
PCC	0	XTSTART	CLS	CSS	0	PCC2	PCC1	PCC0
		1 1 1						

Caution 1. Bit 5 is a read-only bit.

3.3.11 IIC clock selection register 0

µPD78F807x

Address: FFA8H After reset: 00H R/W

Symbol	7	6	<5>	<4>	<3>	<2>	1	0
IICCL0	0	0	CLD0	DAD0	SMC0	DFC0	CL01	CL00

Selection Clock Setting

IICX0		IICCL0		Selection	Transfer	Settable Selection	Operation Mode
Bit 0	Bit 3	Bit 1	Bit 0	Clock (fw)	Clock (fw/m)	Clock (fw) Range	
CLX0	SMC0	CL01	CL00	(111)	(100/11)		
0	0	0	0	fprs/2	fw/44	2.00 to 4.19 MHz	Normal mode
0	0	0	1	fprs/2	fw/86	4.19 to 8.38 MHz	(SMC0 bit = 0)
0	0	1	0	fprs/4	fw/86		
0	0	1	1	Setting proh	ibited		·
0	1	0	х	fprs/2	fw/24	4.00 to 8.38 MHz	High-speed mode
0	1	1	0	fprs/4	fw/24		(SMC0 bit = 1)
0	1	1	1	Setting proh	ibited		·
1	0	х	х	Setting proh	ibited		
1	1	0	х	fprs/2	fw/12	4.00 to 4.19 MHz	High-speed mode
1	1	1	0	fprs/4	fw/12	1	(SMC0 bit = 1)
1	1	1	1	Setting proh	ibited		

78K0/KC2

Address: FFA8H After reset: 00H R/W

Symbol	7	6	<5>	<4>	<3>	<2>	1	0
IICCL0	0	0	CLD0	DAD0	SMC0	DFC0	CL01	CL00

Selection Clock Setting

IICX0		IICX0		Selection	Transfer	Settable Selection	Operation Mode		
Bit 0	Bit 3	Bit 1	Bit 0	Clock (fw)	Clock (fw/m)	Clock (fw) Range			
CLX0	SMC0	CL01	CL00	(111)	(100/11)	Kunge			
0	0	0	0	fprs/2	fw/44	2.00 to 4.19 MHz	Normal mode		
0	0	0	1	fprs/2	fw/86	4.19 to 8.38 MHz	(SMC0 bit = 0)		
0	0	1	0	fprs/4	fw/86				
0	0	1	1	fexscl0	fw/66	6.4 MHz			
0	1	0	х	fprs/2	fw/24	4.00 to 8.38 MHz	High-speed mode		
0	1	1	0	fprs/4	fw/24		(SMC0 bit = 1)		
0	1	1	1	fexscl0	fw/18	6.4 MHz			
1	0	х	х	Setting prohi	ibited				
1	1	0	х	fprs/2	fw/12	4.00 to 4.19 MHz	High-speed mode		
1	1	1	0	fprs/4	fw/12	1	(SMC0 bit = 1)		
1	1	1	1	Setting proh	ibited				

Remarks 1. x:

Don't care

2. fprs:

Peripheral hardware clock frequency

3. fEXSCL0: External clock frequency from EXSCL0 pin

3.3.12 Interrupt request flag register (IF1L)

µPD78F807x

Address: FFE2H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
IF1L	0	0	WTIF	KRIF	TMIF51	WTIIF	SRIF0	ADIF
Continued	Dita Canal Zah	ط مرديدام اماريم	- 0					

Caution 1. Bits 6 and 7 should always be 0.

78K0/KC2

Address: FFE2H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
IF1L	0	PIF6	WTIF	KRIF	TMIF51	WTIIF	SRIF0	ADIF

3.3.13 Interrupt mask flag register (MK1L)

µPD78F807x

Address: FFE6H After reset: 01H R/W

Symbol	7	6	5	4	3	2	1	0
MK1L	1	1	WTMK	KRMK	TMMK51	WTIMK	SRMK0	ADMK

Caution 1. Bits 6 and 7 should always be 1.

78K0/KC2

Address: FFE6H After reset: 01H R/W

Symbol	7	6	<5>	<4>	3	2	1	0
MK1L	1	PMK6	WTMK	KRMK	TMMK51	WTIMK	SRMK0	ADMK

3.3.14 Priority specification flag register (PR1L)

µPD78F807x

Address: FFEAH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
PR1L	1	1	WTPR	KRPR	TMPR51	WTIPR	SRPR0	ADPR
Caution 1	Rits 6 and 7 sh	ould always h	o 1					

Caution 1. Bits 6 and 7 should always be 1.

78K0/KC2

Address: FFEAH After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
PR1L	1	PPR6	WTPR	KRPR	TMPR51	WTIPR	SRPR0	ADPR

4. Writing with Flash Programmer

Data can be written to the flash memory on-board or off-board, by using a dedicated flash programmer.

(1) **On-board programming**

The contents of the flash memory can be rewritten after the device has been mounted on the target system. The connectors that connect the dedicated flash programmer must be mounted on the target system.

(2) Off-board programming

Data can be written to the flash memory with a dedicated program adapter (FA series) before the device is mounted on the target system.

Remark The FA series is a product of Naito Densei Machida Mfg. Co., Ltd.

	Pin Conf	iguration o Progra	of Dedicated Flash mmer	With CS	5110	With UART6		
	Signal	I/O	Pin Function	Pin Name	Pin No.	Pin Name	Pin No.	
	Name				64 Pins		64 Pins	
ſ	SI/RxD	Input	Receive signal	SO10/P12	24	TxD6/P13	23	
	SO/TxD	Output	Transmit signal	SI10/RxD0/P11	25	RxD6/P14	22	
	SCK	Output	Transfer clock	SCK10/TxD0/P10	26	-	-	
	CLK	Output	Clock to Micro	Note 1	-	Note2	Note2	
	RESET	Output	Reset signal	RESET	5	RESET	5	
	FLMD0	Output	Mode signal	FLMD0	6	FLMD0	6	
Ī	Vdd	I/O	VDD voltage	Vdd	11	Vdd	11	
			generation/ power monitoring	AVREF	58	AVref	58	
			power monitoring	VRO	49	VRO	49	
				VRS	50	VRS	50	
>				SUP	46	SUP	46	
				SUP1 to SUP6	29, 30, 35, 36, 41, 42	SUP1 to SUP6	29, 30, 35, 36, 41, 42	
				MOD1	54	MOD1	54	
	Vss	-	GND	Vss	10	Vss	10	
				AVss	59	AVss	59	
				GND	51	GND	51	
				GND1 to GND6	27, 32, 33, 38, 39, 44	GND1 to GND6	27, 32, 33, 38, 39, 44	
				GND_DRV	53	GND_DRV	53	
				MOD2	55	MOD2	55	
				MSLP	18	MSLP	18	
				SRC	56	SRC	56	
>				RESET_A	57	RESET_A	57	

Notes 1. Only the internal high-speed oscillation clock (fRH) can be used when CSI10 is used.

2. Only the X1 clock (fx) or external main system clock (fexclk) can be used when UART6 is used. When using the clock out of the flash programmer, connect CLK and EXCLK of the programmer. PG-FP5, FL-PR5: Please connect the programmer's CLK to EXCLK/X2/P122.

5. Power Supply Circuit

5.1 **Power Supply Function**

The power supply circuit is a series regulator that generates 5 V (typ.) output voltage from 12 V battery supply voltage.

- Regulator output function
- External sensor power supply output function
- Over current protection function
- Low-voltage detection function
- External dropper auxiliary function

5.2 Regulator Output Function

The regulator output function generates 5 V (typ.) from 12-V battery supply voltage.

5.3 External Sensor Power Supply Output Function

The external sensor power supply output function generates the external sensor voltage from the 5-V (typ.) regulator output voltage.

The output can be controlled using the SVDDON bit in the system control register (SC).

5.4 Over Current Protection Function

The over current protection function limits the current to protect the device if the over current flows in the regulator output due to load short-circuiting.

The normal state automatically recovers when the over current disappears. If the over current flows in the external sensor power supply output, the SVDD bit in the system control register (SC) is cleared, turning off the output forcibly. The over current in the external sensor power supply output can be checked using the SVDDOC bit in the system status register (SS).

<R> Regulator output current limit: 51 mA (min., 7 V \leq VSUP \leq 19 V), 26 mA (min., 6 V \leq VSUP < 7 V)

SVDD output shutdown current: 21 mA (min.)

Caution When the external dropper auxiliary function is used, the over current protection function is not available for the regulator output.

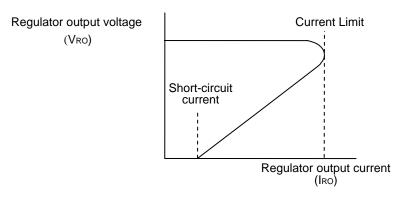


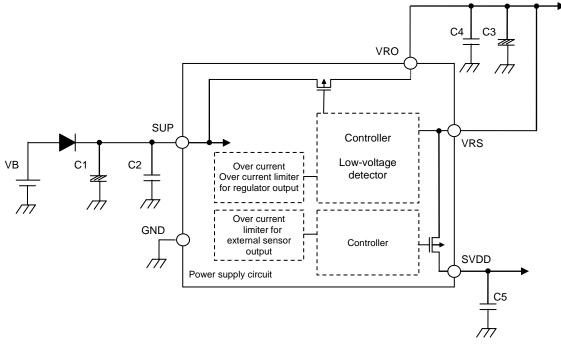
Figure 5-1. Regulator Output Current Limit Characteristics

5.5 Low-Voltage Detection Function

The low-voltage detection function detects a drop in a regulator output voltage caused by load short-circuiting. The regulator output voltage can be checked using the LVI bit in the system status register.

Low-voltage detection value: 4.2 V (typ.)

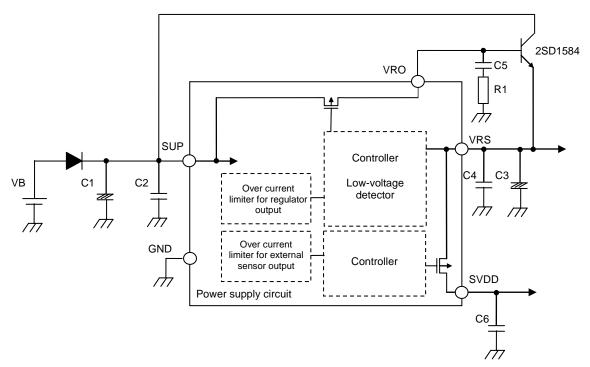
5.6 External Dropper Auxiliary Function


The external dropper auxiliary function allows enhancing the output current capability by adding an external dropper (NPN transistor) to the 5-V output dropper according to the output current.

Output current: When 2SD1584 is used, 150 mA (min.)

<R> Caution When the external dropper auxiliary function is used, the over current protection function is not available for the regulator output.

<R>



Recommended values for external capacitors

 $\begin{array}{l} C1 \geq 33 \ \mu F \\ C2 \geq 0.01 \ \mu F \\ 4.7 \ \mu F \leq C3 \leq 100 \ \mu F \\ C4 \geq 0.01 \ \mu F \\ <\!\!R\!\!> C5 \leq 0.01 \ \mu F \end{array}$

Caution Place the ceramic capacitors (C2 and C4) between the SUP and GND pins and between the VRO and GND pins, close to the SUP and VRO pins and use the shortest possible wiring.

<R> Figure 5-3. Power Supply Circuit Application Example Using External NPN Transistor

Recommended values for external capacitors and resistors

 $\begin{array}{c} C1 \geq 33 \ \mu F \\ C2 \geq 0.01 \ \mu F \\ 4.7 \ \mu F \leq C3 \leq 100 \ \mu F \\ C4 \geq 0.01 \ \mu F \\ C5: \ TBD \\ R1: \ TBD \\ <\!\!R\!\!> C6 \leq 0.01 \ \mu F \end{array}$

- Cautions1. Place the ceramic capacitors (C2 and C4) between the SUP and GND pins and between the VRS and GND pins, close to the SUP and VRS pins and use the shortest possible wiring.
 - 2. Place the external NPN transistor close to the VRO, VRS, and SUP pins and use the shortest possible wiring for the base, emitter, and collector.
 - 3. Place the ceramic capacitor (C5) and resistor (R1) between the VRO and GND pins, close to the VRO pin and use the shortest possible wiring.

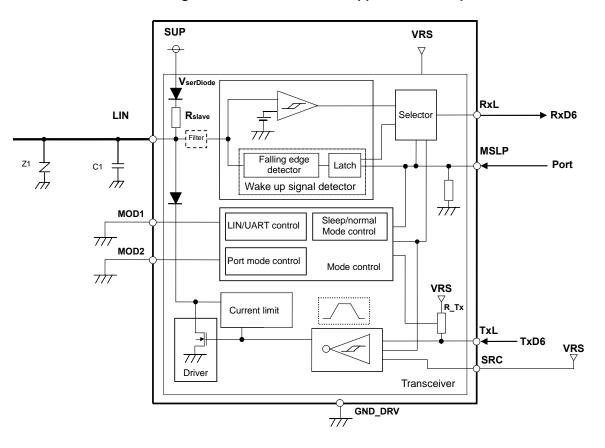
6. LIN Transceiver

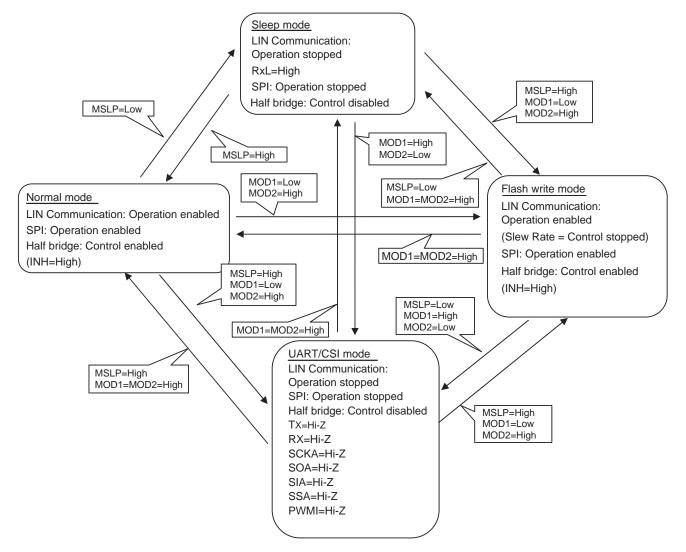
6.1 LIN Transceiver Function

<R> The LIN transceiver and external specifications comply with LIN Specifications Rev.2.0, 2.1.

The LIN transceiver has the following functions.

- Sleep function
- Over current protection function




Figure 6-1. LIN Transceiver Application Example

Remarks 1. RxL pin is connected to RxD6 and TxL pin is connected to TxD6 in the package.2. LIN pin includes slave pull-up register and diode.

6.2 Operation Modes

Figure 6-2. Operation Mode Transition Diagram

<R> Table 6-1. LIN Operation Mode Setting

LIN Operation Mode	Slew Rate	Port Mode ^{Note}	MSLP	SRC	MOD1	MOD2
LIN sleep	-	Port mode A	L	×	Н	Н
LIN normal	Fast	Port mode A	Н	Н	Н	Н
	Slow	Port mode A	Н	L	Н	Н
Flash write	OFF	Port mode A	Н	×	L	Н
UART/CSI mode	-	Port mode B	L	×	Н	L

Note For the pin states in each port mode, refer to table 6-2, Pin States in Each Port Mode.

<R> Caution MOD1 = MOD2 = Low is setting prohibited.

Remark ×: Don't care

<r></r>
Table 6-2. Pin States in Each Port Mode

1EJ020	Port Mode	INH	SCKA	SOA	SIA	SSA	PWMI	TxL	RxL	States of Analog Functions
0 Rev.2.0	Port mode A	Pull-up input	Pull- down input	Output/ Hi-Z (Sleep)	Pull- down input	Pull-up input	Pull- down input	Pull-up input	Output	SPI communication enabled in the normal/flash write mode
8	Port mode B	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	SPI communication, and LIN transceiver stopped (for P10, P11, P12, P13, P14, P15, and P16, only the function of the microcontroller is available).

μPD78F807x

<R>

Table 6-3. Operation States of Each Analog Function Block

	Function Block	Normal mode	Sleep mode	UART/CSI mode	Flash write mote Operation enabled	
Power	Regulator output	Operation enabled	Operation enabled	Operation enabled		
supply circuit	External sensor power supply output	Control enabled	Control disabled (output state before entering the sleep mode retained)	Control disabled (output state before entering the UART/CSI mode retained)	Control enabled	
	Low voltage detector	Operation enabled	Operation enabled	Operation enabled	Operation enabled	
	Over current limiter ^{Note}	Operation enabled	Operation enabled	Operation enabled	Operation enabled	
LIN transceiver		Operation enabled	Operation stopped (LIN: recessive)	Operation stopped (LIN: recessive)	Operation enabled	
Half-bridge	circuit	INH=High: Control enabled INH=Low: Control disabled (Hi-Z)	Control disabled (when INH = high, output state before entering the sleep mode retained; when INH = low, Hi-Z)	Control disabled (when INH = high, output state before entering the UART/CSI mode retained; when INH = low, Hi-Z)	INH=High: Control disabled INH=Low: Control disabled (Hi-Z)	
	Over current limiter	Operation enabled	Operation stopped	Operation stopped	Operation enabled	
SPI & PWN	1 controller	Control enabled	Operation stopped	Operation stopped	Control enabled	
Analog pov	ver-on clear (POCA) circuit	Operation enabled	Operation enabled	Operation enabled	Operation enabled	
Thermal sh	utdown function	Operation enabled	Operation stopped	Operation stopped	Operation enabled	

Note Applicable only when the internal P-ch MOS is used for a 5-V output dropper.

RENESAS

• Sleep mode

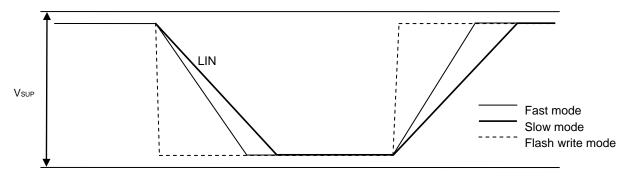
<R> When MSLP is low and MOD1 and MOD2 are high, the sleep mode is entered (the MSLP pin is internally pulled down).

In the sleep mode, the LIN driver output is off (recessive) regardless of the TxL pin input state, thus leading to the lowpower consumption state. In the sleep mode, the LIN bus monitor function is active; when the recessive-to-dominant edge is detected on the LIN bus, the RxL pin goes low from high thus inputting a high level signal to the MSLP pin and is held low until the normal mode is entered.

• Normal mode

<R> When MSLP is high and MOD1 and MOD2 are high, the normal mode is entered.

In the normal mode, driving the TxL pin high turns off the LIN driver output (recessive) and driving the TxL pin low places the LIN driver in the dominant state.


When the LIN bus is in the dominant state, the RxL pin outputs a low level signal and when in the recessive state, the RxL pin outputs a high level signal.

In the normal mode, communication via the LIN bus is enabled.

The slew rates can be switched according to the SRC pin state.

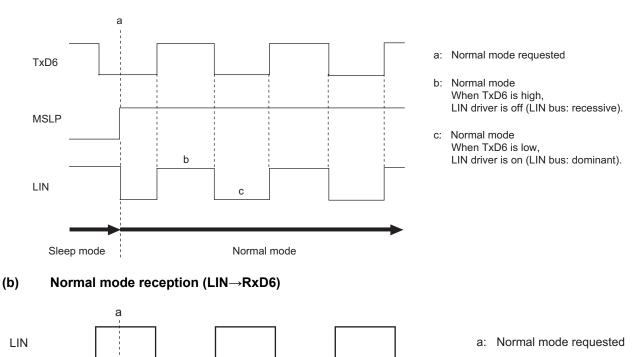
- SRC = High \cdots Fast mode 20-Kbps baud rate is supported.
- --- SRC = Low \cdots Slow mode 10.4-Kbps baud rate is supported.

• Flash write mode

When MSLP is high, MOD1 is low, and MOD2 is high, the flash write mode is entered.

This is a 100-Kbps baud rate mode, in which flash ROM can be programmed at a high speed via the LIN bus.

Caution No slew rate can be set in the flash write mode.


UART/CSI mode

When MSLP is low, MOD1 is high, and MOD2 is low, the UART/CSI mode is entered.

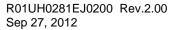

Flash ROM can be programmed on board via UART6 or CSI10.

Figure 6-3. Normal Mode Timing Chart

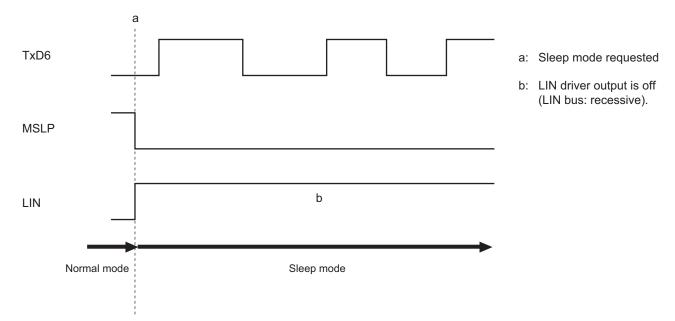
(a) Normal mode transmission (TxD6 \rightarrow LIN)

- b: Normal mode
 When LIN bus is dominant,
 RxD6 outputs low.
- c: Normal mode When LIN bus is recessive, RxD6 outputs high.

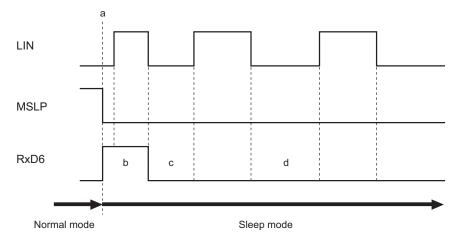
Sleep mode

MSLP

RxD6


С

Normal mode


b

(a) Sleep mode transmission (TxD6 \rightarrow LIN)

(b) Sleep mode reception (LIN \rightarrow RxD6)

- a: Sleep mode requested
- b: Sleep mode RxD6 outputs high.
- c: Sleep mode RxD6 outputs low when a LINI falling edge is detected.
- d: Sleep mode RxD6 is held low until the normal mode transition request is received from the microcontroller.

6.3 Over Current Limiter

The over current limiter forcibly turns off the LIN driver (recessive) for protection when an over current flows in the LIN driver caused by load short-circuiting. An over current in the LIN driver can be monitored using the LOC bit in the system status register (SS).

After detecting an over current, the LIN bus is held off (recessive); inputting a high level signal to the TxL pin allows the bus to recover.

Current limit: 40 mA (min.)

7. Half-Bridge Circuit

The half-bridge circuit incorporates six half-bridge driver channels.

<R> To use the half-bridge circuit, set MSLP to high, INH to high, and port mode to A.

7.1 Half-Bridge Drivers

• HBO: 6 channels

Application: Compact motor drivers

The output can be controlled by the system control register (SC), half-bridge control register (HBC), and PWM input control register (PICL) when MSLP and INH are both high. For PWM control of the low-side MOSFET of the halfbridge drivers, the low-side MOSFET to which the PWM control signal is to be input can be selected by the PWM input control register (PICL). The PWM control signal should be input to the PWMI pin.

Inputting a low level signal to the INH pin when the pin is high clears the half-bridge control register (HBC) and PWM input control register (PICL), turning off the output of all the half-bridge drivers. Writing to these registers while INH is low is ignored.

In the sleep mode, the half-bridge drivers retain the output state before entering the sleep mode. However, if the sleep mode is entered with the high-side driver turned on, the output of the pertinent half-bridge driver is Hi-Z since the internal charge pump circuit stops during the sleep mode.

Caution To reset the half-bridge control register (HBC) and PWM input control register (PICL) by inputting a low level signal to the INH pin when the pin is high, input a low level signal to the INH pin at least 10 µs.

Mode transition diagram

Table 7-1. Operation State in Inhibit Mode

		Function Block	Inhibit Mode
	Power supply circuit	Regulator output	Operation enabled
		External sensor power supply output	Operation enabled
		Low voltage detector	Operation enabled
		Over current limiter	Operation enabled
	LIN transceiver		Operation enabled
R>	Half bridge circuit		Control disabled (output off (Hi-z))
р ,	SPI & PWM controller		Operation enabled
R>-	Analog power-on clear (POCA) circuit	Operation enabled
	Thermal shutdown funct	ion	Operation enabled

7.2 Over Current Protection Function

The half-bridge drivers incorporate over current limiters to protect the device.

The over current limiter forcibly turns off the half-bridge driver output for protection when the current exceeding the <R> detection value (-1.4 A max. for high-side MOSFET; 1.4 A min. for low-side MOSFET) caused by load short-circuiting is detected in a half-bridge driver. Using the HBOCS bit in the system control register (SC), the driver channels to be protected against an over current can be selected. When the HBOCS bit in the system control register (SC) is 0, if an over current occurs in any of HBO1 to HBO3, bits 4 to 9 in the half-bridge control register (HBC) and bits 2 to 4 in the PWM input control register (PICL) are cleared and the outputs from HBO1 to HBO3 are forcibly turned off. Similarly, if an over current occurs in any of HBO4 to HBO6, bits 10 to 15 in the half-bridge control register (HBC) and bits 5 to 7 in the PWM input control register (PICL) are cleared and the outputs from HBO4 to HBO6 are forcibly turned off. When the HBOCS bit in the system control register (PICL) are cleared and the outputs from HBO4 to HBO6 are forcibly turned off. When the HBOCS bit in the system control register (PICL) are cleared and the outputs from HBO4 to HBO6 are forcibly turned off. When the HBOCS bit in the system control register (SC) is 1, the half-bridge control register (HBC) and PWM input control register (PICL) are entirely cleared and the outputs from all the half-bridge drivers are forcibly turned off. An over current in the half-bridge drivers can be monitored using the system status register (SS) and half-bridge status register (HBS).

Caution: 1. The over current protection function incorporated in the half-bridge circuit is intended to protect the device in the abnormal situation; use this function only when it is absolutely necessary.

7.3 Through-Current Protection Function

The half-bridge drivers incorporate dead time generation circuits to protect the device against a through-current.

The dead time generation circuit receives the data written to the half-bridge control register (HBC) and allows the data to be output from the half-bridge driver after the switching delay time (TBD μ s typ.) after data which value changes to 1 from 0 is latched in HBnH and HBnL.

Remark n = 1 to 6

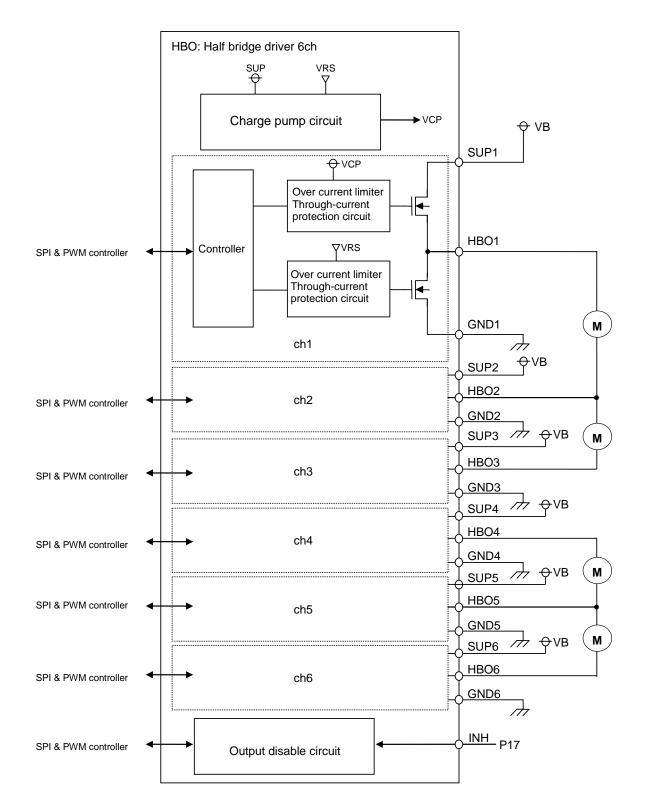
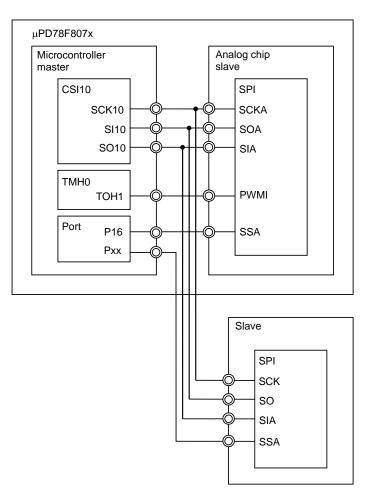


Figure 7-1. Half-Bridge Circuit Application Example

Caution The SUP potential should be the same as the SUP1 to SUP6 potential, and the GND potential should be the same as the GND1 to GND6 and GND_DRV potential.

RENESAS


8. SPI & PWM Controller

8.1 SPI & PWM Controller

The SPI & PWM controller serves as the microcontroller-to-analog chip interface to implement clock synchronous communication using four lines: a serial clock line (SCKA), serial data lines (SIA and SOA), and a slave select input line (SSA) and is also used to control the half-bridge output using the PWM input (PWMI).

[Data transmission and reception]

- Data size in 8-bit units
- MSB first

Figure 8-1. Configuration Example of SPI & PWM Controller

8.2 SPI Communication

Data is transmitted and received in 8-bit units. When SSA is low, data transmission and reception are enabled. Data is transmitted one bit at one time at the rising edge of a serial clock pulse and is received one bit at one time at the falling edge of a serial clock pulse. When the R/W bit is 1, the parity is checked for the R/W bit and the received address data (A4 to A0) using the even parity bit (P bit). If a parity error is detected, the PE bit in the system status register (SS) is set and writing the next byte is halted. If a parity error is not detected, data is written to the SPI control register after detection of the SSA rising edge, and appropriate operation is executed according to the written data. When the R/W bit is 0, the parity is not checked.

In the sleep mode (MSLP = low), operation is halted.

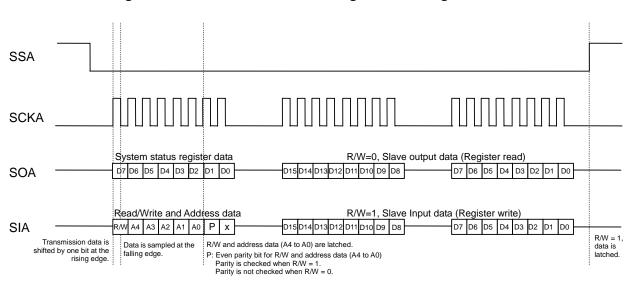


Figure 8-2. SPI Communication Timing for 16-Bit Register Access

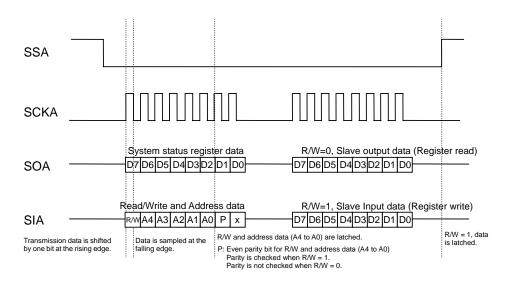


Figure 8-3. SPI Communication Timing for 8-Bit Register Access

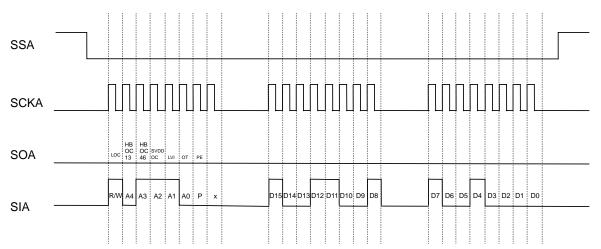
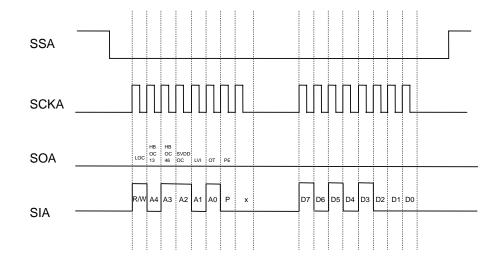



Figure 8-5. Data Format Example 2 (R/W = 1, Address data = 01101B, Write data = 10101000B)

8.3 SPI Control Registers

The SPI & PWM controller controls the following six registers.

- Reset status register (RS)
- Half-bridge control register (HBC)
- PWM input control register (PICL)
- System status register (SS)
- Half-bridge status register (HBS)
- System control register (SC)

(1) Reset status register (RS)

The reset status register (RS) indicates the status of a cancellation request for resetting the analog block through the power-on clear (POCA) circuit and the status of a request for resetting the analog block through the external reset pin (RESET_A).

This register is reset to 00H by a request for resetting the analog chip through the power-on clear (POCA) circuit.

Address: 01111B After POC reset: 00H R/W^{Notes 1, 2}

Symbol	7	6	5	4	3	2	1	0
RS	POC	EXR	0	0	0	0	0	0

POC	Cancellation request flag for resetting the analog block through the power-on clear (POCA) circuit					
0	A cancellation request for resetting through POCA has not been generated.					
1	1 A cancellation request for resetting through POCA has been generated.					
Being an up	Being an update-type flag, it is cleared by a reset request through POCA.					

EXR	Request flag for resetting the analog block through the external reset pin (RESET_A)						
0	0 An external request for resetting through RESET_A has not been generated.						
1	1 An external request for resetting through RESET_A has been generated.						
Being an ac	Being an accumulate-type flag, it is not cleared until 0 is written to.						

Notes 1. Bit 7 is a read-only bit.

2. Writing 1 to bit 6 is ignored.

(2) Half-bridge control register (HBC)

The half-bridge control register (HBC) controls the output of the half-bridge drivers. When the OT bit in the system status register (SS) is 1, the write instruction to the half-bridge control register (HBC) is ignored and the register retains the value before being written to.

This register is reset to 0000H by generation of a reset signal, overheat detection by the thermal shutdown circuit, and low level signal input to the INH pin. The specific bits are cleared upon detection of the over current of the half-bridge drivers.^{Note}

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
HBC	HB	0	0	0	0											
	6H	6L	5H	5L	4H	4L	3H	3L	2H	2L	1H	1L				

Address: 01110B After reset: 0000H R/W

HBnH	HBnL	Operation mode					
0	0	High-side MOSFET and low-side MOSFET are turned off.					
0	1	High-side MOSFET is turned off and low-side MOSFET is turned on.					
1	0	High-side MOSFET is turned on and low-side MOSFET is turned off.					
1	1	Setting prohibited					

Note Depends on the HBOCS bit setting in the system control register (SC).

Caution When both HBnH and HBnL receive data which value changes to 1, HBnH and HBnL retain the values before being written to.

Remark n: Channel number (1 to 6)

(3) PWM input control register (PICL)

The PWM input control register (PICL) enables or disables PWM signal input to the low-side MOSFET of the halfbridge drivers from the PWM input pin (PWMI). When the OT bit in the system status register (SS) is 1, the write instruction to the PWM input control register (PICL) is ignored and the register retains the value before being written to.

This register is reset to 00H by generation of a reset signal, overheat detection by the thermal shutdown circuit, and low level signal input to the INH pin. The specific bits are cleared upon detection of the over current of the half-bridge drivers. Note

7 5 Symbol 6 4 3 2 1 0 PICL PI5L PI4L PI3L PI2L PI1L PI6L 0 0 PInL **Operation mode** 0 PWM input is disabled. 1 PWM input is enabled.

Address: 01101B After reset: 00H R/W

Depends on the HBOCS bit setting in the system control register (SC). Note

Remark n: Channel number (1 to 6)

(4) System status register (SS)

The system status register (SS) indicates the status of the over current in the external sensor power supply output function, LIN transceiver, half-bridge drivers; the status of the regulator output voltage (5 V (typ.)); the status of the overheat of the analog chip; and the status of parity error detection.

This register is reset to 00H by generation of a reset signal.

Address: 01100B After reset: 00H R/W^{Notes 1, 2}

Symbol	7	6	5	4	3	2	1	0
SS	LOC	HBOC13	HBOC46	SVDDOC	LVI	ОТ	PE	0

LOC	Over current flag in LIN transceiver			
0	The LIN driver is not in the over current state.			
1	1 Over current has been generated in the LIN driver.			
Being an acc	Being an accumulate-type flag, it is not cleared until 0 is written to.			

HBOC13	HBOC13 Over current flag in half-bridge driver channels 1 to 3							
0	0 None of the half-bridge driver channels 1 to 3 are in the over current state.							
1	1 Over current has been generated in any of the half-bridge driver channels 1 to 3.							
Being an upo	Being an update-type flag, it is cleared when HB1OC, HB2OC, and HB3OC are all 0.							
The OR is ta	The OR is taken between the HB1OC, HB2OC, and HB3OC bits in the HBS register.							

HBOC46 Over current flag in half-bridge driver channels 4 to 6						
0 None of the half-bridge driver channels 4 to 6 are in the over current state.						
1	1 Over current has been generated in any of the half-bridge driver channels 4 to 6.					
Being an upo	Being an update-type flag, it is cleared when HB4OC, HB5OC, and HB6OC are all 0.					
The OR is ta	The OR is taken between the HB4OC, HB5OC, and HB6OC bits in the HBS register					

SVDDOC	Over current flag in external sensor power supply output						
0	The external sensor power supply output is not in the over current state.						
1	1 Over current has been generated in the external sensor power supply output.						
Being an acc	Being an accumulate-type flag, it is not cleared until 0 is written to.						

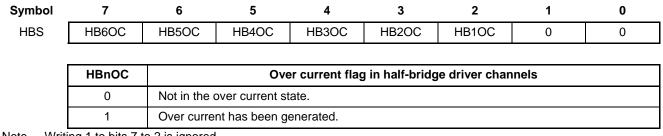
LVI	Low voltage flag of regulator output			
0	The regulator output voltage is equal to or larger than the low-voltage detection value (4.2 V (typ.).			
1 The regulator output voltage is smaller than the low-voltage detection value (4.2 V (typ.).				
Being an update-type flag, it is automatically cleared when the regulator output voltage rises to the detection voltage (4.2 V (typ.)) or larger.				

Notes 1. Bits 6, 5, and 3 are read-only bits.

2. Writing 1 to bits 7, 4, 2, and 1 is ignored.

Remark The description is continued on the following page.

ОТ	Analog chip overheat flag	
0	The overheat detection circuit has not detected the temperature equal to or higher than the overheat detection temperature (150°C (min.)).	
1 The overheat detection circuit has detected the temperature higher than the overheat detection temperature (150°C (min.)).		
Being an accumulate-type flag, it is not cleared until 0 is written to.		


PE	Parity error detection flag	
0	0 No parity error has been detected.	
1	A parity error has been detected.	
Being an accumulate-type flag, it is not cleared until 0 is written to.		
When the R/W bit is 1, this bit is set to 1 when the incorrect parity bit (P) is received.		

(5) Half-bridge status register (HBS)

The half-bridge status register (HBS) indicates the over current status of the half-bridge drivers. Since the flag bits in this register are accumulate-type flags, they are not cleared until 0 is written to.

This register is reset to 00H by generation of a reset signal.

Address: 01011B After reset: 00H R/W^{Note}

Note Writing 1 to bits 7 to 2 is ignored.

Remark n:Channel number (1 to 6)

(6) System control register (SC)

The system control register (SC) enables or disables output from the external sensor power supply; enables or disables the half-bridge function; and selects the half-bridge driver channels to be protected against over current generated.

This register is reset to 00H by generation of a reset signal.

Address: 01010B After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
SC	HBON	SVDDON	HBOCS	0	0	0	0	0

HBON	Half-bridge driver operation mode
0	Disabled
1	Enabled

SVDD	ON	External sensor power supply output mode
0		Off
1		On

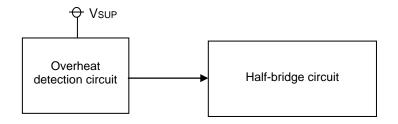
HBOCS	Half-bridge driver channels to be protected against over current
0	When over current occurs in any of half-bridge driver channels 1 to 6, outputs from three channels including the pertinent channel are turned off.
• When over current occurs in any of half-bridge driver channels 1 to 3, outputs from channels 1 to 3 are turned off.	
	• When over current occurs in any of half-bridge driver channels 4 to 6, outputs from channels 4 to 6 are turned off
1	When over current occurs in any of half-bridge driver channels 1 to 6, outputs from all the channels are turned off.

9. Protection Functions

The analog chip in the μ PD78F807x incorporates the following protection circuits.

- Thermal shutdown circuit
- Over current limiter

Table 9-1 shows the conditions under which the above protection circuits are activated and deactivated.


Table 9-1. Conditions of Activating and Deactivating Protection Circ	uits
--	------

Function Block		Protection Circuit	Activating Conditions	Deactivating Conditions	
Power supply	Regulator output	Over current limiter	Over current occurs in the regulator output.	Over current disappears from the regulator output.	
circuit	External sensor power supply output	Over current limiter	Over current occurs in the external sensor power supply output.	The SVDDON bit is re- set.	
LIN transceiver		Over current limiter	Over current occurs in the LIN transceiver	A high level signal is input to the TxL pin.	
Half-bridge circuit		Over current limiter	Over current occurs in HBO1 to HBO6.	The HBC register is re- set.	
Thermal shutdown circuit		Thermal shutdown circuit	A temperature equal to or higher than the overheat detection temperature (150°C min.) is detected.	The OT bit is cleared.	

9.1 Thermal Shutdown Circuit Operation

The thermal shutdown circuit prevents the device from destruction and deterioration caused by overheat. When the overheat detection circuit in the analog chip detects the temperature equal to or higher than the overheat detection temperature (150°C min.), the OT bit in the system status register (SS) is set, and the half-bridge control register (HBC) and PWM input control register (PICL) are cleared simultaneously to forcibly turn off the outputs from all the half-bridge drivers in the half-bridge circuit. Clearing the OT bit in the system status register (SS) enables the half-bridge control register (HBC) and PWM input control register (PICL) to control the outputs again.

Caution: The thermal shutdown circuit incorporated in the analog chip is intended to protect the device in the abnormal situation; use this function only when it is absolutely necessary.

Figure 9-1. Block Diagram of Thermal Shutdown Circuit

9.2 Over Current Limiter Operation

9.2.1 Power Supply Circuit

The power supply circuit incorporates over current limiters separately for regulator output and external sensor power supply output. For details, refer to chapter 5 Power Supply Circuit.

9.2.2 LIN Transceiver

The LIN transceiver incorporates an over current limiter. For details, refer to chapter 6 LIN Transceiver.

9.2.3 Half-Bridge Circuit

The half-bridge circuit incorporates over current limiters. For details, refer to chapter 7 Half-Bridge Circuit.

10. Analog Reset Function

The analog chip provides the analog reset function.

Either of the following two methods can be used to generate an analog reset.

- (1) External reset through the RESET_A pin
- (2) Internal reset according to the comparison result between the power supply voltage and detected voltage of the analog power-on clear (POCA) circuit

External reset and internal reset are functionally identical; they both initialize the SPI control registers when a reset is generated.

When a low level signal is input to the RESET_A pin or a specific voltage is detected by the POCA circuit, a reset is generated. Tables 10-1 and 10-2 show the reset state of the analog function blocks and interconnected analog function pins in the package. Table 10-3 shows the state of the SPI control registers after reset acceptance.

When a low level signal is input to the RESET_A pin thus generating a reset, and a high level signal is input to the RESET_A pin again, a reset is released and the appropriate operation mode is entered according to the input voltage level to the MSLP, MOD1, and MOD2 pins. Reset through the POCA circuit is released when VDD \geq VPOCA after a reset and the appropriate operation mode is entered according to the input voltage level to the MSLP, MOD1, and MOD2 pins.

The analog reset source can be monitored using the reset status register (RS).

Caution 1. To generate an external reset, input the low level signal to the RESET_A pin at least 10 µs.

	Fur	action Block	State during Reset
	Power supply circuit	Regulator output	Output
		External sensor power supply output	Operation stopped
		Low voltage detector	Operation stopped
		Over current limiter ^{Note}	Operation stopped
	LIN transceiver		Operation enabled
	Half bridge circuit		Operation stopped (Hi-Z)
		Over current limiter	Operation stopped
<r></r>	SPI & PWM controller		Operation stopped
< Λ ∕	Analog power on clear (POCA)	circuit	Operation enabled
	Thermal shutdown function		Operation stopped

Note Applicable only when the internal P-ch MOS is used for a 5-V output dropper.

Table 10–2. State of Analog Block Function Pins Interconnected in Package

	Function Pin	State during Reset
	SCKA	Pull-down input
	SIA	Pull-down input
	SOA	Hi-Z
<r></r>	SSA	Pull-up input
	PWMI	Pull-down input
	RxL	Output
	TxL	Pull-up input
	INH	Pull-up input

Table 10–3. State of SPI Control Registers after Reset Acceptance

SPI Control register	State after Reset Acceptance
Reset status register (RS)	00H
Half-bridge control register (HBC)	0000H
PWM input control register (PICL)	00H
System status register (SS)	00H
Half-bridge status register (HBS)	00H
System control register (SC)	00H

11. Electrical Specifications ((A) Grade Products)

11.1 Absolute Maximum Ratings

<R> Absolute Maximum Ratings for Microcontroller Block (TA = 25°C)

Parameter	Symbol		Conditions	Ratings	Unit
Supply	Vdd			-0.5 to +6.5	V
voltage	Vss			-0.5 to +0.3	V
	AVREF			-0.5 to VDD+0.3 ^{Note}	V
	AVss			-0.5 to +0.3	V
Input voltage	VI1		P17, P20 to P24, P30 to P33, 2, X1, X2, RESET, FLMD0	-0.3 to Vpp+0.3	V
	VI2	P60, P61 (N-ch op	en drain)	-0.3 to +6.5	V
REGC pin input voltage	Viregc			-0.5 to +3.6 and -0.5 to VDD	V
Output voltage	Vo			-0.3 to VDD+0.3 ^{Note}	V
Analog input voltage	Van	ANI0 to ANI4		-0.3 to AV _{REF} +0.3 ^{Note} and 0.3 to V _{DD} +0.3 ^{Note}	V
Output current, high	Іон1	Per pin	P00, P01, P10 to P17, P30 to P33, P70, P120, P130	-10	mA
		Total of all pins	P00, P01, P120, P130	-25	mA
		-80 mA	P10 to P17, P30 to P33, P70	-55	
	Іон2	Per pin	P20 to P24	-0.5	mA
		Total of all pins		-2	1
	Іонз	Per pin	P121, P122	-1	mA
		Total of all pins		-2	Î
Output current, low	IOL1	Per pin	P00, P01, P10 to P17, P30 to P33, P60, P61, P70, P120, P130	30	mA
		Total of all pins	P00, P01, P120, P130	60	mA
		200 mA	P10 to P17, P30 to P33, P60, P61, P70	140	1
	IOL2	Per pin	P20 to P24	1	mA
		Total of all pins	1	5	ţ
	Іоіз	Per pin	P121, P122	4	mA
		Total of all pins	1	8	Î

Note Must be 6.5 V or lower.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of multi-function pins are the same as those of port pins.

ſ	Parameter	Symbol	Conditions	Ratings	Unit
	Supply voltage	VSUP1	SUP, SUP1 to SUP6	-0.3 to +40 Note 3	V
<r></r>	Input voltage	VIA1	LIN	-0.3 to +40 Note 3	V
		VIA2	VRS	-0.3 to +6.5	V
		Via3	MOD1, MOD2, MSLP, SRC, TxL, SCKA, SIA, SSA, PWMI, RESET_A	-0.3 to VRS+0.3 ^{Note1}	V
	LIN negative input voltage	VILlin	LIN, 7 V≤Vsup≤19 V, 1 s	Vsup-40	V
	Output voltage	VOA1	LIN, HBO1 to HBO6	-0.3 to +40 Note 3	V
		Voa2	VRO, SVDD	-0.3 to +6.5	V
<r></r>		Voa3	RxL, SOA	-0.3 to VRS+0.3 ^{Note1}	V
	Output current	IR01	VRO	Self limit Note2	mA
		Isvddo	SVDD	Self limit Note2	mA
		Ilin	LIN	Self limit Note2	mA
		Інво	HBO1 to HBO6	Self limit Note2	mA
		Irx	RxL	-10 to +10	mA
		ISOA	SOA	-10 to +10	mA

Absolute Maximum Ratings for Analog Block (TA = 25°C)

Notes 1. Must be 6.5 V or lower.

<R>

2. The over current limiter is activated when the current exceeds the self limit.

3. When the input voltage is 25 V or higher, the overcurrent protection circuits for the LIN transceiver and halfbridge circuit operate.

Absolute Maximum Ratings for Common Item

Parameter	Symbol	Conditions	Ratings	Unit
Operation ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-65 to +150	°C
Junction temperature	Tjmax		150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

11.2 Microcontroller Block Electrical Characteristics

X1 Oscillator Characteristics

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator, crystal	Vss X1 X2	X1 clock oscillation frequency (fx) ^{Note1}	$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq \\ 5.5 \ V \end{array}$	1.0 ^{Note2}		20.0	MHz
resonator			1.8 V ≤ V _{DD} < 2.7 V	1.0		5.0	

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{A}\text{V}_{SS} = 0 \text{ V})$

Notes 1. Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2. It is 2.0 MHz (MIN.) when programming on the board via UART6.

- Cautions 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.
 - Keep the wiring length as short as possible.
 - Do not cross the wiring with the other signal lines.
 - Do not route the wiring near a signal line through which a high fluctuating current flows.
 - Always make the ground point of the oscillator capacitor the same potential as Vss.
 - Do not ground the capacitor to a ground pattern through which a high current flows.
 - Do not fetch signals from the oscillator.
 - Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Internal Oscillator Characteristics

			$(T_{\rm A} = -40 \text{ to } +85^{\circ}\text{C}, 1.8)$	$V \leq V DD$	$\leq 5.5 \text{ V}, \text{ V}$	Vss = AVs	ss = 0 V)
Resonator	Parameter	С	MIN.	TYP.	MAX.	Unit	
8 MHz	Internal high-speed	RSTS = 1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	7.6	8.0	8.4	MHz
	oscillation clock frequency (fкн) ^{Note}		$1.8 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$	7.6	8.0	10.4	MHz
oscillator		RSTS = 0		2.48	5.6	9.86	MHz
240 kHz	Internal low-speed	$2.7~V \leq V_{DD} \leq 5.5~V$		216	240	264	kHz
internal oscillator	oscillation clock frequency (frL)	$1.8 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$		192	240	264	kHz

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Remark 1. RSTS: Bit 7 of the internal oscillation mode register (RCM)

2. For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

DC Characteristics (1/5)

Para	meter	Symbol	Conditior	IS	MIN.	TYP.	MAX.	Uni
Outpu	ut	Іон1	Per pin for P00, P01, P10 to	$4.0~V \le V_{\text{DD}} \le 5.5~V$			-3.0	mA
currer high ^{No}	nt, ote 1		P17, P30 to P33, P70, P120, P130	$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			-2.5	mA
nign			FISU	$1.8~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			-1.0	mA
			Total ^{Note 2} of P00, P01,	$4.0~V \leq V_{DD} \leq 5.5~V$			-12.0	mA
			P120, P130	$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			-7.0	mA
				$1.8~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			-4.0	m/
			Total ^{Note 2} of P10 to P17,	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			-18.0	m/
			P30 to P33, P70	$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			-15.0	m/
				$1.8~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			-10.0	m/
			Total ^{Note 2} of all pins	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			-23.0	m/
				$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			-20.0	m/
				$1.8~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			-14.0	m/
		Іон2	Per pin for P20 to P24	AVREF = VDD			-0.1	m/
			Per pin for P121, P122				-0.1	m
Outpu		IOL1	Per pin for P00, P01, P10 to	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			8.5	m
currer	current, Iow ^{Note 3}		P17, P30 to P33, P70, P120, P130	$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			5.0	m
1011				$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			2.0	m
			Per pin for P60, P61	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			15.0	m
				$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			5.0	m
				$1.8~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			2.0	m
			Total ^{Note 2} of P00, P01, P120, P130	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			20.0	m
				$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			15.0	m
				$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			8.0	m
			Total ^{Note 2} of P10 to P17,	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			45.0	m
			P30 to P33, P60, P61, P70	$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			35.0	m
				$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			20.0	m
			Total ^{Note 2} of all pins	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			65.0	m/
	-			$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			50.0	m/
				$1.8~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			28.0	m/
		IOL2	Per pin for P20 to P24	AVREF = VDD			0.4	m/
			Per pin for P121, P122				0.4	m/

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from VDD to an output pin.
2. Specification under conditions where the duty factor is 70% (time for which current is output is 0.7 × t and time for which current is not output is 0.3 × t, where t is a specific time). The total output current of the pins at a duty factor of other than 70% can be calculated by the following expression.

• Where the duty factor of IoH is n%: Total output current of pins = $(IoH \times 0.7)/(n \times 0.01)$

Total output current of pins = $(-20.0 \times 0.7)/(50 \times 0.01) = -28.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

3. Value of current at which the device operation is guaranteed even if the current flows from an output pin to GND.

Remark Unless specified otherwise, the characteristics of multi-function pins are the same as those of port pins.

<R>

DC Characteristics (2/5)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
Input	VIH1	P12, P13, P15, F	0.7Vdd		Vdd	V	
voltage, high	VIH2		P00, P01, P10, P11, P14, P16, P17, P30 to P33, P70, P120, RESET, EXCLK			Vdd	V
	Vінз	P20 to P24	AVREF = VDD	0.7AVref		AVref	V
	VIH4	P60, P61	0.7Vdd		6.0	V	
Input	VIH1	P12, P13, P15, F	0.7Vdd		Vdd	V	
voltage, high	VIH2		211, P1 <u>4, P16, P</u> 17, P120, RESET, EXCLK	0.8Vdd		Vdd	V
	Vінз	P20 to P24	AVREF = VDD	0.7AVref		AVref	V
	VIH4	P60, P61		0.7Vdd		6.0	V
Input	VIL1	P12, P13, P15, F	260, P61, P121, P122	0		0.3Vdd	V
voltage, low	VIL2	P00, P01, P10, P P30 to P33, P70,	0		0.2Vdd	V	
	VIL3	P20 to P24	AVREF = VDD	0		0.3AVref	V
Input	VIL1	P12, P13, P15, F	P12, P13, P15, P60, P61, P121, P122			0.3Vdd	V
voltage, low	VIL2		P00, P01, P10, P11, P1 <u>4, P16, P</u> 17, P30 to P33, P70, P120, RESET, EXCLK			0.2Vdd	V
	VIL3	P20 to P24	AVREF = VDD	0		0.3AVref	V
Output voltage, high	Voh1	P00, P01, P10 to P17, P30 to	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq \ 5.5 \ V, \\ I_{OH1} = -3.0 \ mA \end{array}$	Vdd - 0.7			V
		P33, P70, P120, P130	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V},$ Ioh1 = -2.5 mA	Vdd - 0.5			V
			1.8 V \leq Vdd < 2.7 V, Iон1 = -1.0 mA	Vdd - 0.5			V
	Vон2	P20 to P24	AVref = Vdd, Ιοή2 = -100 μΑ	Vdd - 0.5			V
		P121, P122	Іон2 = -100 μА	Vdd - 0.5			V

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V})$	$' \leq V DD \leq 5.5 V, A V REF \leq$	\leq VDD, VSS = AVSS = 0 V)

Notes 1. Applies to the products with a 48-Kbyte or larger flash memory.

2. Applies to the products with a 32-Kbyte or smaller flash memory.

Remark Unless specified otherwise, the characteristics of multi-function pins are the same as those of port pins.

DC Characteristics (3/5)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Un
Output voltage, low	Vol1	P00, P01, P10 to P17, P30 to	4.0 V ≤ VD IOL1 = 8.5 r				0.7	V
		P33, P70, P120, P130	2.7 V ≤ VD IOL1 = 5.0 r	•			0.7	V
			1.8 V ≤ VD IOL1 = 2.0 r				0.5	V
			1.8 V ≤ VD IOL1 = 1.0 I				0.5	V
			1.8 V ≤ VD IOL1 = 0.5 I				0.4	\
	Vol2	P20 to P24	AVREF = V	DD, IOL2 = 0.4 mA			0.4	\
		P121, P122	IOL2 = 0.4 I	mA			0.4	١
	Vol3	P60, P61	4.0 V ≤ VD IOL3 = 15.0				2.0	\
			4.0 V ≤ VD IOL3 = 5.0 r				0.4	١
			$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \\ I_{OL1} = 5.0 \ mA \end{array}$				0.6	\
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} < 4.0 \ \text{V}, \\ I_{\text{OL1}} = 3.0 \ \text{mA} \end{array}$				0.4	١
			1.8 V ≤ VD IOL1 = 2.0 r				0.4	١
Input leakage current, high	ILIH1	P00, P01, P10 to P17, P30 to P33, P60, P61, P70, P120, FLMD0, RESET	Vi = Vdd				1	μ
	ILIH2	P20 to P24	VI = AVREF	, AVref = Vdd			1	μ
	Іцнз	P121, P122 (X1, X2)	Vi = Vdd	I/O port mode			1	μ
				OSC mode			20	μ
Input leakage current, low	ILIL1	P00, P01, P10 to P17, P30 to P33, P60, P61, P70, P120, FLMD0, RESET	VI = Vss				-1	μ
	ILIL2	P20 to P24	VI = Vss, A	Vref = Vdd			-1	μ
	ILIL3	P121, P122	VI = Vss	I/O port mode			-1	μ
		(X1, X2)		OSC mode			-20	μ
Pull up resistor	Ru	VI = Vss			10	20	100	k
FLMD0 supply	Vil	In normal operati	In normal operation mode				0.2 Vdd	\
voltage	Vін	In self-programm	ing mode		0.8 Vdd		Vdd	١

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Remark Unless specified otherwise, the characteristics of multi-function pins are the same as those of port pins.

DC Characteristics (4/5)

Parameter	Symbol		Co	onditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	Idd1	Operation mode	fхн = 20 MHz _{Note 2}	VDD = 5.0 V	Square wave input		3.2	5.5	mA
			1002		Resonator connection		4.5	6.9	
				VDD = 3.0 V	Square wave input		3.2	5.5	
					Resonator connection		4.2	6.6	
			fxH = 10 MHz Notes 2, 3	Vdd = 5.0 V	Square wave input		1.6	2.8	mA
			Notes 2, 3		Resonator connection		2.3	3.9	
				VDD = 3.0 V	Square wave input		1.5	2.7	
					Resonator connection		2.2	3.2	
			fxH = 5 MHz Notes 2, 3	VDD = 3.0 V	Square wave input		0.9	1.6	mA
					Resonator connection		1.3	2.0	
				VDD = 2.0 V	Square wave input		0.7	1.4	mA
					Resonator connection		1.0	1.6	
			frH = 8 MHz, VDD = 5.0 V Note 4				1.4	2.5	mA
	IDD2	HALT mode	fxH = 20 MHz ^{Note 2,} VDD = 5.0 V		Square wave input		0.8	2.6	mA
					Resonator connection		2.0	4.4	
			fxн = 10 MH Vpp = 5.0 V		Square wave input		0.4	1.3	mA
					Resonator connection		1.0	2.4	
			fxH = 5 MHz ^{Notes 2, 3,} VDD = 3.0 V		Square wave input		0.2	0.65	mA
					Resonator connection		0.5	1.1	
			frн = 8 MH:	$f_{RH} = 8 \text{ MHz}, V_{DD} = 5.0 \text{ V}^{Note 4}$			0.4	1.2	mA
	Іддз	STOP	STOP				1	20	μΑ
		mode ^{Note 5}	T _A = -40 to	+70 °C			1	10	μA

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Notes 1. Total current flowing into the internal power supply (VDD), including the peripheral operation current. Port output current and current flowing through on-chip pull-up resistor are not included. Input leakage current with input pin fixed to VDD or Vss is included.

2. Operational current of the 8-MHz internal oscillator and 240-kHz internal oscillator, the current flowing through the A/D converter, watchdog timer, and LVI are not included.

- 3. When AMPH (bit 0 of clock operation mode select register (OSCCTL)) = 0.
- 4. Operational current of the X1 oscillator and 240-kHz internal oscillator, the current flowing through the A/D converter, watchdog timer, and LVI are not included.

- 5. Operational current of the 240-kHz internal oscillator, the current flowing through the A/D converter, watchdog timer, and LVI are not included.
- Remarks 1. fxH: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. free Internal high-speed oscillation clock frequency

11 Electrical Specifications ((A) Grade Products)

DC Characteristics (5/5)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}\text{DD} \le 5.5 \text{ V}, \text{AV}\text{REF} \le \text{V}\text{DD}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

	(,	,		,
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
A/D converter operating current	ADC ^{Note 1}	$2.3~V \leq AV_{\text{REF}} \leq V_{\text{DD}},~ADCS = 1$		0.86	1.9	mA
Watchdog timer operating current	IWDT ^{Note 2}	During 240 kHz internal low speed oscillation clock operation		5	10	μΑ
LVI operating current	LVI Note 3			9	18	μΑ
	A/D converter operating current Watchdog timer operating current	A/D converter operating current IADC ^{Note 1} Watchdog timer operating IWDT ^{Note 2}	A/D converter operating currentIADC $2.3 V \le AV_{REF} \le V_{DD}$, ADCS = 1Watchdog timer operating currentIwDTDuring 240 kHz internal low speed oscillation clock operation	A/D converter operating currentIADC $2.3 V \le AV_{REF} \le V_{DD}$, ADCS = 1Watchdog timer operating currentIwDTDuring 240 kHz internal low speed oscillation clock operation	A/D converter operating currentIADC $2.3 V \le AV_{REF} \le V_{DD}$, ADCS = 10.86Watchdog timer operating currentIwDTDuring 240 kHz internal low speed oscillation clock operation5	A/D converter operating currentIADC $2.3 V \le AV_{REF} \le V_{DD}, ADCS = 1$ 0.861.9Watchdog timer operating currentIwDTDuring 240 kHz internal low speed oscillation clock operation510

Notes 1. Current (AVREF) flowing only to the A/D converter. The current value of the microcontroller block is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.

<R>
2. Current flowing only to the watchdog timer (including the operating current of the 240 kHz internal oscillator). The current value of the microcontroller block is the sum of IDD2 or IDD3 and IWDT when the watchdog timer operates.

<R>

3. Current flowing only to the LVI circuit. The current value of the microcontroller block is the sum of IDD2 or IDD3 and ILVI when the LVI circuit operates.

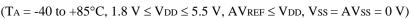
AC Characteristics

(1) Basic operation (1/2)

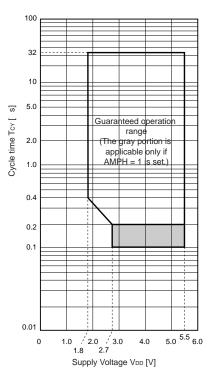
	Parameter	Symbol	С	MIN.	TYP.	MAX.	Unit	
Γ	Instruction cycle (minimum	Тсү	Main	$2.7~V \leq V_{DD} \leq 5.5~V$	0.1		32	μS
	instruction execution time)		system clock (fxp) operation	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.4 ^{Note 1}		32	μs
>	Peripheral hardware clock	fprs	fprs = fхн	$4.0~V \leq V_{DD} \leq 5.5~V$			20	MHz
	frequency		(XSEL = 1)	$\begin{array}{c} 2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V} \\ \text{Note 2} \end{array}$			20	MH
				$1.8~V \leq V_{DD} < 2.7~V$			5	MH
			fprs = frh	$2.7~\text{V} \leq \text{V}_\text{DD} < 5.5~\text{V}$	7.6		8.4	MH
		(XSE	(XSEL = 0)	$\frac{1.8}{_{Note 3}} V \leq V_{DD} < 2.7 V$	7.6		10.4	MH
	External main system clock	fexclk	$2.7 \text{ V} \leq \text{Vdd} \leq$	5.5 V	1.0 ^{Note 4}		20.0	MH
	frequency		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$		1.0		5.0	MH
	External main system clock	texclкн,	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		24			ns
	input high-level width, low- level width	t exclkl	1.8 V ≤ Vdd <	2.7 V	96			ns
	TI000, TI010 input high-level width, low-level width	tтіно, tті∟о	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq$	5.5 V	2/f _{sam} +0.1 ^{Note 5}			μS
			$2.7 V \leq V_{DD} <$	$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$				μS
			1.8 V ≤ VDD <	2.7 V	2/f _{sam} +0.5 ^{Note 5}			μS
	TI50, TI51 input frequency	fti5	$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq$	5.5 V			10	MH
			$2.7 \text{ V} \leq \text{Vdd} <$: 4.0 V			10	MH
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$				5	MH

Notes 1. 0.38 μ s when operating with the 8 MHz internal oscillator.

2. Applies to the main system clock frequency characteristics. The frequency of the division clock for peripheral functions should be fxH/2 (10 MHz) or smaller. However, multiplier/divider can be operated at fxH (20 MHz).

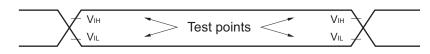

3. Applies to the main system clock frequency characteristics. The frequency of the division clock for peripheral functions should be fRH/2 or smaller.

4. It is 2.0 MHz (MIN.) when programming on the board via UART6.

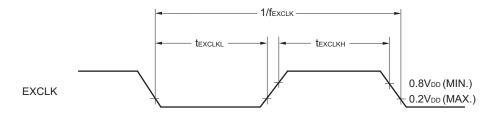

5. Selection of fsam = fprs, fprs/4, or fprs/256 is possible using bits 0 and 1 (PRM000, PRM001) of prescaler mode register 00 (PRM00). Note that when selecting the TI000 valid edge as the count clock, fsam = fprs.

(1) Basic operation (2/2)

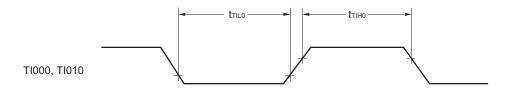
(1A	= -40 to $+85$	$^{\circ}$ C, 1.8 V \leq VDD \leq 5.5 V	, AVREF	\leq VDD, V	ss = AVss	=0 V)
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
TI50, TI51 input high-level width, low-level	t⊤i∺5,	$4.0~V \leq V_{DD} \leq 5.5~V$	50			ns
width	t⊤i∟5	$2.7 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$	50			ns
		$1.8 \text{ V} \le \text{Vdd} < 2.7 \text{ V}$	100			ns
Interrupt input high-level width, low-level width	tinth, tintl		1			μS
Key interrupt input low-level width	tkr		250			ns
RESET low-level width	trsl		10			μS

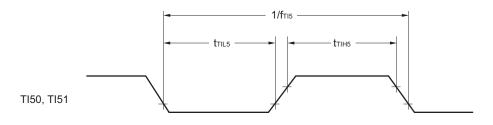


TCY vs VDD (Main System Clock Operation)

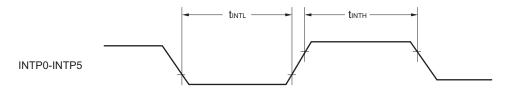


μPD78F807x

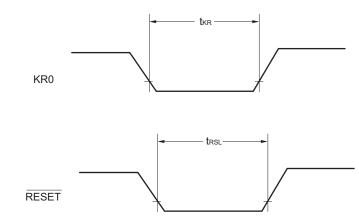

AC Timing Test Points



External Main System Clock Timing



TI Timing



Interrupt Request Input Timing

Key Interrupt Input Timing

(2) Serial interface

RESET Input Timing

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{AV}_{REF} \le \text{V}_{DD}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

(a) UART6 (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

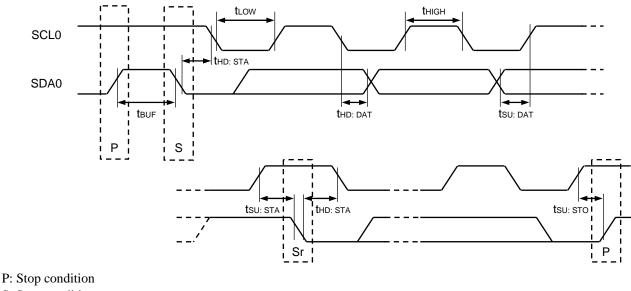
(b) UART0 (dedicated baud rate generator output)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate					625	kbps

(c) **IIC0**

Parameter	Symbol	Conditions	Standard Mode		High Sp	beed Mode	Unit
			MIN.	MIN.	MAX.	MAX.	
SCL0 clock frequency	fclк		0	100	0	400	kHz
Restart condition setup time	tsu:sta		4.7		0.6		μS
Hold time Note 1	thd:sta		4.0		0.6		μS
Hold time when SCL0 = low	tLOW	Internal clock operation	4.7		1.3		μS
Hold time when SCL0 = high	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat	When $fw = f_{XH}/2^N$ is selected Note 3 or when $fw = f_{EXSCL0}$ is selected Note 3	0	3.45	0	0.9 ^{Note 4} 1.00 ^{Note 5}	μs μs
		When $f_{W} = f_{RH}/2^N$ is selected Note 3	0	3.45	0	1.05	μS
Stop condition setup time	tsu:sto		4.0		0.6		μS
Bus free time	thd:buf		4.7		1.3		μS

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of the is normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

3. fw indicates the IIC0 transfer clock selected by the IICCL0 and IICX0 registers.

4. When fw \geq 4.4 MHz is selected

5. When fw < 4.4 MHz is selected

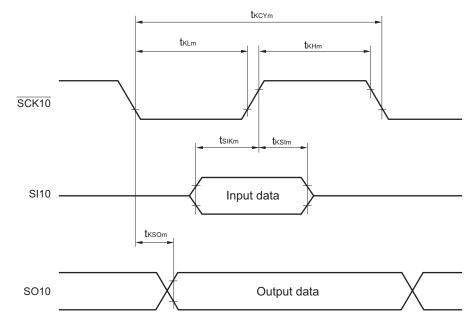
IIC0 Transfer Timing

S: Start condition

Sr: Restart condition

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	t _{KCY1}	$4.0~V \leq V_{DD} \leq 5.5~V$	200			ns
		$2.7~V \leq V_{DD} < 4.0~V$	400			ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 2.7 V	600			ns
SCK10 high/low level width	t _{KH1} , t _{KL1}	$4.0~V \le V_{DD} \le 5.5~V$	tkcy1/2 - 20 Note 1			ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}$	tkcy1/2 - 30 Note 1			ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	tkcy1/2 - 60 Note 1			ns
SI10 setup time	t _{SIK1}	$4.0~V \leq V_{DD} \leq 5.5~V$	70			ns
(to SCK10↑)		$2.7~V \leq V_{DD} < 4.0~V$	100			ns
		$1.8~\text{V} \leq \text{V}_{\text{DD}} < 2.7~\text{V}$	190			ns
SI10 <u>hold tim</u> e (from SCK10↑)	t _{KSI1}		30			ns
Delay time from SCK10↓ to SO10 output	t _{KSO1}	C = 50 pF ^{Note 2}			40	ns

Notes 1. This value is when high-speed system clock (fxH) is used.


2. C is the load capacitance of the SCK10 and SO10 output lines.

(e) CSI10 (slave mode, SCK10... external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tксү2			400			ns
SCK10 high-/ low-level width	tĸн₂, tĸ∟₂			tксү2/2			ns
SI10 setup time (to SCK10↑)	tsik2			80			ns
SI10 hold time (from SCK10↑)	tksi2			50			ns
Delay time from	tkso2	$C = 50 \text{ pF}^{Note}$	$4.0~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			120	ns
$\overline{SCK10}\downarrow$ to SO10 output			$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V}$			120	ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			180	ns

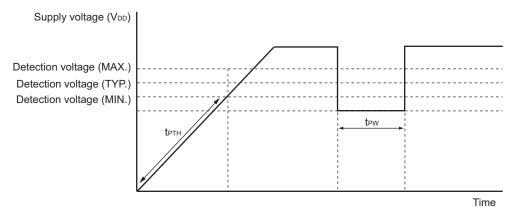
Note C is the load capacitance of the SO1n output line.

CSI10 Transfer Timing

Remark m = 1, 2

A/D Converter Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				10	bit
Overall error ^{Notes 1, 2}	Ainl	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$			±0.4	%FSR
		$2.7 \text{ V} \le AV_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$2.3~\text{V} \leq \text{AV}_{\text{REF}} < 2.7~\text{V}$			±1.2	%FSR
Conversion time	t CONV	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$	6.1		66.6	μS
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} < 4.0 \text{ V}$	12.2		66.6	μS
		$2.3~\text{V} \leq \text{AV}_{\text{REF}} < 2.7~\text{V}$	27		66.6	μS
Zero-scale error ^{Notes 1, 2}	Ezs	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$			±0.4	%FSR
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$2.3~\text{V} \leq \text{AV}_{\text{REF}} < 2.7~\text{V}$			±0.6	%FSR
Full-scale error ^{Notes 1, 2}	Efs	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$			±0.4	%FSR
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±0.6	%FSR
		$2.3 \text{ V} \le \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±0.6	%FSR
Integral linearity error ^{Note 1}	ILE	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$			±2.5	LSB
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±4.5	LSB
		$2.3~V \leq AV_{\text{REF}} < 2.7~V$			±6.5	LSB
Differential linearity error Note 1	Dle	$4.0~V \leq AV_{\text{REF}} \leq 5.5~V$			±1.5	LSB
		$2.7 \text{ V} \le \text{AV}_{\text{REF}} < 4.0 \text{ V}$			±2.0	LSB
		$2.3 \text{ V} \le \text{AV}_{\text{REF}} < 2.7 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN		AVss		AVREF	V

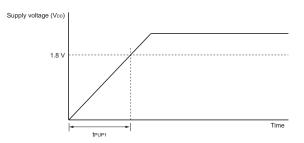

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

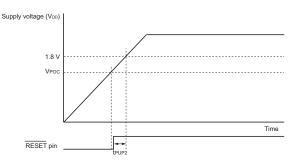
1.59 V POC Circuit Characteristics

			$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit		
Detection voltage	VPOC		1.44	1.59	1.74	V		
Power voltage rise inclination	tртн	VDD: 0 V \rightarrow change inclination of VPOC	0.5			V/ms		
Minimum pulse width	tew		200			μS		

POC Circuit Timing


Supply Voltage Rise Time

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$


				(· · · ·	, .	55 - 0.1
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum time to rise to 1.8 V (VDD (MIN.))	t PUP1	POCMODE (option byte) = 0, when RESET input is not used			3.6	ms
(Vdd: 0 V \rightarrow 1.8 V)						
Maximum time to rise to 1.8 V (VDD (MIN.))	tpup2	POCMODE (option byte) = 0, when RESET input is used			1.9	ms
(releasing RESET input \rightarrow VDD: 1.8 V)						

Supply Voltage Rise Time Timing

• When **RESET** pin input is not used

• When RESET pin input is used

2.7 V POC Circuit Characteristics

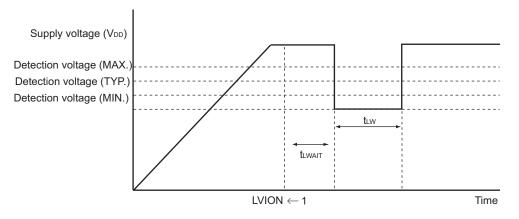
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage on application of supply voltage	VDDPOC	POCMODE (option bye) = 1	2.50	2.70	2.90	V

Remark The operations of the POC circuit are as described below, depending on the POCMODE (option byte) setting

Option Byte Setting	POC Mode	Operation
POCMODE = 0	1.59 V mode operation	A reset state is maintained until $V_{POC} = 1.59 V$ (TYP.) is reached after the power is turned on, and the reset is released when V_{POC} is exceeded. After that, POC detection is performed at V_{POC} , similarly to when the power was turned on. The power supply voltage must be raised at a time of tPUP1 or tPUP2 when POCMODE is 0.
POCMODE = 1	2.7 V/1.59 V mode operation	The reset state is maintained until VDDPOC = 2.7 V (TYP.) is reached after the power is turned on, and the reset is released when VDDPOC is exceeded. After that, POC detection is performed at VPOC = 1.59 V (TYP.) and not at VDDPOC. The use of the 2.7 V/1.59 V POC mode is recommended when the voltage takes longer than tPTH to reach 1.8 V after the power is turned on.

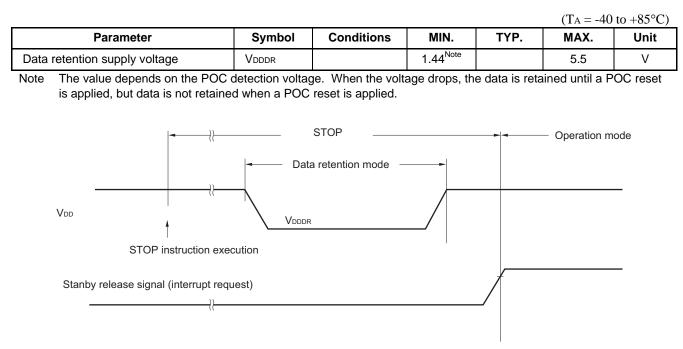
LVI Circuit Characteristics


		(TA	$= -40$ to $+85^{\circ}$ C, VPOC $\leq V$	$/\text{DD} \le 5.5$ V	V, AVREF	\leq VDD, VS	s = 0 V
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVIO		4.14	4.24	4.34	V
voltage		VLVI1		3.99	4.09	4.19	V
		VLVI2		3.83	3.93	4.03	V
		VLVI3		3.68	3.78	3.88	V
		VLVI4		3.52	3.62	3.72	V
		VLV15		3.37	3.47	3.57	V
		VLVI6		3.22	3.32	3.42	V
		VLVI7		3.06	3.16	3.26	V
		VLV18		2.91	3.01	3.11	V
		Vlv19		2.75	2.85	2.95	V
		VLVI10		2.60	2.70	2.80	V
		VLVI11		2.45	2.55	2.65	V
		VLVI12		2.29	2.39	2.49	V
		VLVI13		2.14	2.24	2.34	V
		VLVI14		1.98	2.08	2.18	V
		VLVI15		1.83	1.93	2.03	V
	External input pin ^{Note 1}	EXLVI	$\begin{array}{l} EXLVI < V_{DD}, \\ 1.8 \ V \leq V_{DD} \leq 5.5 \ V \end{array}$	1.11	1.21	1.31	V
Minimum pu	lse width	t∟w		200			μS
Operation st	abilization wait time ^{Note 2}	t LWAIT		10			μS

Notes 1. The EXLVI/P120/INTP0 pin is used.

2. Time required from setting bit 7 (LVION) in the low-voltage detection register (LVIM) to 1 to operation stabilization

Remark $V_{LVI(n-1)} > V_{LVIn}$: n = 1 to 15


LVI Circuit Timing

RENESAS

μ PD78F807x

Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}\text{DD} \le 5.5 \text{ V}, \text{AV}\text{REF} \le \text{V}\text{DD}, \text{V}\text{ss} = \text{AV}\text{ss} = 0 \text{ V})$

Basic characteristics

Para	meter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
VDD supp	ly current	ldd	fxp = 10 MHz	: (TYP.), 20 MHz (MAX.)			4.5	11.0	mA
Erase time Notes 1, 2	All blocks	Teraca					20	200	ms
Notes 1, 2	Block unit	Terasa					20	200	ms
Write tim (in 8 bit u _{Note 1}		Twrwa					10	100	μs
Number rewrites per chip	of	Cerwr	1 erase + 1 write after erase = 1 rewrite _{Note 3}	 When a flash memory programmer is used, and the libraries^{Note 4} provided by Renesas Electronics are used For program update 	15 years	1000			Times
				 When the EEPROM emulation libraries^{Note 5} provided by Renesas Electronics are used The rewritable ROM size: 4 KB For data update 	5 years	10000			Times
				Conditions other than the above ^{Note 6}	10 years	100			Times

Notes 1. Characteristic of the flash memory. For the characteristic when a dedicated flash programmer, PG-FP5, is used and the rewrite time during self programming, see 78K0/Kx2 User's Manual (R01UH0008E).

2. The prewrite time before erasure and the erase verify time (writeback time) are not included.

- 3. When a product is first written after shipment, "erase ? write" and "write only" are both taken as one rewrite.
- 4. The sample library specified by the 78K0/Kx2 Flash Memory Self Programming User's Manual (U17516E) is excluded.
- 5. The sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (U17517E) is excluded.
- These include when the sample library specified by the 78K0/Kx2 Flash Memory Self Programming User's Manual (U17516E) and the sample program specified by the 78K0/Kx2 EEPROM Emulation Application Note (U17517E) are used.

Remarks 1. fxp: Main system clock oscillation frequency

2. For serial write operation characteristics, refer to 78K0/Kx2 Flash Memory Programming (Programmer) Application Note (U17739E).

11.3 Analog Block Characteristics

Power supply circuit characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output voltage	Vccout1	$7 \text{ V} \leq \text{V}_{\text{SUP}} \leq 19 \text{ V}$ VCCOUT = VRO = VRS, IRO = 1 mA to 50 mA	4.85	5	5.15	V
	Vccout2	$6 V \le V_{SUP} \le 19 V$ VCCOUT = VRO = VRS, IRO = 1 mA to 25 mA	4.85	5	5.15	V
	Vссоитз	$\begin{array}{l} 19 \text{ V} < \text{V}_{\text{SUP}} \leq 40 \text{ V} \\ \text{V}_{\text{CCOUT}} = \text{VRO} = \text{VRS}, \\ \text{I}_{\text{RO}} = 1 \text{ mA} \end{array}$	4.5	5	5.5	V
	Vccout4	$7 \text{ V} \leq V_{SUP} \leq 19 \text{ V}, V_{ccout} = VRS$ External NPN transistor used Ic = 1 mA to 150 mA	4.85	5	5.15	V
	Vccout5	$\begin{array}{l} 19 \ V \leq V_{SUP} \leq 40 \ V, \ V_{ccout} = VRS \\ External \ NPN \ transistor \ used \\ Ic = 1 \ mA \end{array}$	4.5	5	5.5	V
	VSVDD1	$6 \le V_{SUP} \le 19 V$ Isvdd = 20 mA	VRS-0.3			V
	Vsvdd2	$7 \text{ V} \leq V_{SUP} \leq 19 \text{ V}$ External NPN transistor used IsvDD = 20 mA	VRS-0.3			V
	Vsvdd3	$6 \le V_{SUP} \le 19 V$ SVDD = OFF			TBD	V
Over current detection	IROlim1	$7 \text{ V} \leq V_{\text{SUP}} \leq 19 \text{ V}, \text{ VRO}$	51		300	mA
current	IROlim2	$6 \text{ V} \leq \text{Vsup} < 7 \text{ V}, \text{ VRO}$	26		300	mA
	ISVDDlim1	$6 \text{ V} \leq V_{\text{SUP}} \leq 19 \text{ V}, \text{ SVDD}$	21	35	50	mA
	ISVDDlim2	$7 \text{ V} \leq V_{SUP} \leq 19 \text{ V}, \text{ SVDD}$ External NPN transistor used	21	35	50	mA
Short circuit current	Ishort			TBD		mA
Load regulation	REG _{L1}	1 mA < Iro \leq 50 mA, Vsup = 14 V			60	mV
	REGL2	1 mA < Ic \leq 150 mA, V _{SUP} = 14 V External NPN transistor used			80	mV
Input regulation	REGIN1	$7~V \leq V_{SUP} \leq 19~V,~I_{RO}$ = 50 mA			60	m۷
		$6 \text{ V} \leq \text{Vsup} \leq 19 \text{ V}, \text{ Iro} = 25 \text{ mA}$			60	mV
	REG _{IN2}	$7 \text{ V} \leq \text{V}_{\text{SUP}} \leq 19 \text{ V}$, Ic = 150 mA External NPN transistor used			60	mV

Supply Current Characteristics

		(Unless specified otherwise,	,	, 		· · ·
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply current	ISUP1 Notes 1, 2	ISUP1 = ISUP, LIN: Sleep, $T_A = 25^{\circ}C$, VSUP = 14 V		30	50	μΑ
	ISUP2 Notes 1, 2	ISUP2 = ISUP, LIN: Sleep		TBD	TBD	μA
	ISUP3 Notes 1, 2	ISUP3 = ISUP, LIN: Normal (LIN bus: Recessive)		TBD	3	mA

(Unless specified otherwise, $T_A = -40$ to $+85^{\circ}C$, $6 V \le V_{SUP} \le 19 V$)

Notes 1. This is the total current flowing to the SUP, SUP1 to SUP6, and VRO internal power supply. However, the current flowing through the port pull-up resistor is not included.

2. VDD current is not included.

For VDD current (IDD), refer to the DC characteristics description in chapter 31 Electrical Specifications ((A) Grade Products), of the 78K0/Kx2 User's Manual (R01UH0008E).

LIN Transceiver Circuit Characteristics

DC Characteristics

		(Unless specified otherw	vise, $TA = -4$	$+0$ to $+85^{\circ}$	$C, 6 V \le V s U$	$IP \le 19 V$
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LIN Bus dominant leak current	BUS_PAS_dom	$V_{BUS} = 0 V, V_{SUP} = 12 V$	-1			mA
LIN Bus recessive leak current	BUS_PAS_rec	$V_{\text{BUS}} \geq V_{\text{SUP}}$			20	μA
LIN Bus current 1	IBUS_NO_GND	0 V < V _{BUS} < 18 V, V _{SUP} = 12 V	-1		1	mA
LIN Bus current 2	IBUS	V _{SUP_Device} = GND, 0 V < V _{BUS} < 18 V		1	10	μA
Receive dominant-level input voltage	VBUSdom				0.4 Vsup	V
Receive recessive-level Input voltage	VBUSrec		0.6 Vsup			V
Receive center level threshold	VBUS_CNT	(Vth_dom+Vth_rec)/2	0.475 Vsup	0.5 Vsup	0.525 Vsup	V
Receive hysteresis	VHYS				0.175 Vsup	V
LIN dominant-level output voltage 1	VBUSdom_DRV _LoSUP	Vsup = 7.3 V, I _{lin} = 15 mA			1.2	V
LIN dominant-level output voltage 2	VBUSdom_DRV _HiSUP	Vsup = 18 V, I _{lin} = 36 mA			2	V
LIN serial diode drop voltage	VSerDiode	Vtxd = Vro	0.4	0.7	1.0	V
LIN pull-up resistance	Rslave		20	30	60	kΩ
MOD1, MOD 2 high level input voltage	Vmh		0.7Vrs			V
MOD1, MOD2 low level input voltage	Vml				0.3Vrs	V
SRC high level input voltage	Vsrh		0.7Vrs			V
SRC low level input voltage	Vsrl				0.3Vrs	V
MSLP high level input voltage	VSLPH		0.7Vrs			V
MSLP low level input voltage	Vslpl				0.3Vrs	V
MSLP low level input voltage	VSLPL				0.3Vrs	V
MSLP pull down resistance	RMSLP		50	100	220	kΩ
LIN driver over current limitation	Iconst	LIN pin inflow current limit	40	80	200	mA

AC Characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Duty_Cycle1 (see figure 12-1)	D1	$\begin{array}{l} Cbus; Rbus = 1 \ nF; \ 1 \ k\Omega/6.8 \ nF; \ 660 \ \Omega/\\ 10 \ nF; \ 500 \ \Omega\\ t_{BIT} = 50 \ \mu s\\ TH_{Rec}(max) = 0.744 \times V_{SUP},\\ TH_{Dom}(max) = 0.581 \times V_{SUP}\\ D_1 = t_{BUS_rec(min)/}(2 \times t_{BIT})\\ 7 \ V \leq V_{SUP} \leq 18 \ V \end{array}$	0.396			-
Duty_Cycle2 (see figure 12-1)	D2	$\begin{array}{l} {\sf SRC} = {\sf High} \\ \\ {\sf C}_{\sf bus}; {\sf R}_{\sf bus} = 1 \; {\sf nF}; \; 1 \; {\sf k}\Omega/6.8 \; {\sf nF}; \; 660 \; \Omega/ \\ \\ 10 \; {\sf nF}; \; 500 \; \Omega \\ \\ {\sf t}_{\sf BIT} = 50 \; {\sf \mu}_{\sf S} \\ \\ {\sf TH}_{\sf Rec(min)} = 0.422 \times {\sf V}_{\sf SUP}, \\ \\ {\sf TH}_{\sf Dom(min)} = 0.284 \times {\sf V}_{\sf SUP} \\ \\ {\sf D}_2 = {\sf t}_{\sf BUS_rec(max)}/(2 \times {\sf t}_{\sf BIT}) \\ \\ {\sf 7.6 \; V \leq V_{\sf SUP} \leq 18 \; V} \\ \\ {\sf SRC} = {\sf High} \end{array}$			0.581	-
Duty_Cycle3 (see figure 12-1)	D3	$\begin{array}{l} C_{\text{bus};} \; \text{R}_{\text{bus}} = 1 \; n\text{F}; \; 1 \; \text{k}\Omega/6.8 \; n\text{F}; \; 660 \; \Omega/\\ 10 \; n\text{F}; \; 500 \; \Omega\\ t_{\text{BIT}} = \; 96 \; \mu\text{s}\\ TH_{\text{Rec}(\text{max})} = \; 0.778 \times \text{V}_{\text{SUP}},\\ TH_{\text{Dom}(\text{max})} = \; 0.616 \times \text{V}_{\text{SUP}}\\ D_{3} = \; t_{\text{BUS}_\text{rec}(\text{min})}/(2 \times t_{\text{BIT}})\\ 7 \; \text{V} \leq \; \text{V}_{\text{SUP}} \leq \; 18 \; \text{V}\\ \text{SRC} = \; \text{Low} \end{array}$	0.417			-
Duty_Cycle4 (see figure 12-1)	D4	$\begin{array}{l} C_{\text{bus};} \; R_{\text{bus}} = 1 \; n\text{F}; \; 1 \; k\Omega/6.8 \; n\text{F}; \; 660 \; \Omega/\\ 10 \; n\text{F}; \; 500 \; \Omega\\ t_{\text{BIT}} = \; 96 \; \mu\text{s}\\ T\text{H}_{\text{Rec}(\text{min})} = \; 0.389 \times \text{V}_{\text{SUP}},\\ T\text{H}_{\text{Dom}(\text{min})} = \; 0.251 \times \text{V}_{\text{SUP}}\\ D_{3} = \; t_{\text{BUS_rec}(\text{max})/(2 \times t_{\text{BIT}})\\ 7.6 \; \text{V} \leq \text{V}_{\text{SUP}} \leq 18 \; \text{V}\\ \text{SRC} = Low \end{array}$			0.590	-
Propagation delay	trx_pd	trx_pdf(1), trx_pdf(2), trx_pdr(1), trx_pdr(2)			6	μs
LIN rising and falling transmitter delay symmetry	trx_sym	trx_sym = trx_pdf(1)-trx_pdr(1), trx_sym = trx_pdf(2)-trx_pdr(2)	-2		2	μS

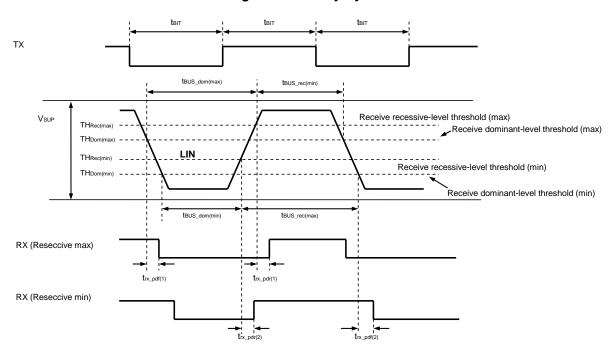
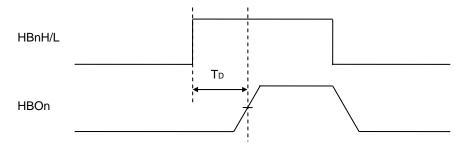


Figure 11-1. Duty Cycle


Half-Bridge Driver Circuit Characteristics

less specified otherwise, $T_A = -40$ to $+85^{\circ}C$, $6 V \le (V_{SUP} = SUP = SUP1$ to $SUP6) \le 19 V$)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	On resistance	HBn_RONH	lo = -1.2 A	TBD	TBD	1.0	Ω
		HBn_RONL	lo = 1.2 A	TBD	TBD	1.0	Ω
<r></r>	Over current detection	HBOn_limH		-2.7		-1.4	А
<r></r>	value	HBOn_limL		1.4		2.7	A
	Output off leak current	ILHBOnH	HBO1 to HBO6			TBD	μΑ
<r></r>		ILHBOnL	HBO1 to HBO6	TBD			μΑ
	Switching delay time	TD	HBO1 to HBO6, High side, Low side		TBD		μS
<r></r>	Switching frequency	fpwmil	Low side, HBO1 to HBO6			TBD	kHz

Remark n = 1 to 6

Switching Delay Timing

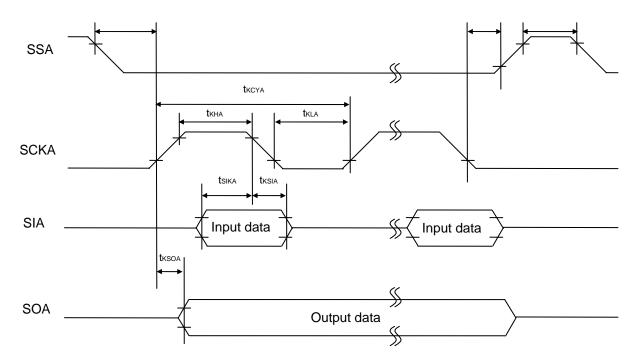
Remarks 1. n = 1 to 6

2. HBnH/L: The high-side or low-side MOSFET control bits of the half-bridge driver

SPI & PWM Controller Characteristics

<R> DC Characteristics

		(Unless specified otherwise	se, $T_A = -40$ (to +85°C,	$6 \text{ V} \leq \text{V}_{\text{SUP}}$	≤19 V)
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCKA, SIA, SSA, PWMI	Vih_spi	SCKA, SIA, SSA, PWMI	0.7 VRS			V
high level input voltage		Port mode A				
SCKA, SIA, SSA, PWMI	VIL_SPI	SCKA, SIA, SSA, PWMI			0.3 VRS	V
low level input voltage		Port mode A				
SCKA, SIA, SSA, PWMI	ILIH_SPI	SCKA, SIA, SSA, PWMI,			1	μΑ
high level input leak current		Port mode B				
SCKA, SIA, SSA, PWMI	LIL_SPI	SCKA, SIA, SSA, PWMI,	-1			μA
low level input leak current		Port mode B				
SOA high level output leak current	ILOH_SPI	SOA, Port mode A			1	μΑ
SOA low level output leak current	ILOL_SPI	SOA, Port mode A	-1			μΑ
SSA pull up resistance	Rssa	SSA, Port mode A	50	100	200	kΩ
SCKA pull down resistance	RSCKA	SCK, Port mode A	50	100	200	kΩ
SIA pull down resistance	Rsia	SIA, Port mode A	50	100	200	kΩ
PWMI pull down resistance	Rрwмi	PWMI, Port mode A	50	100	200	kΩ

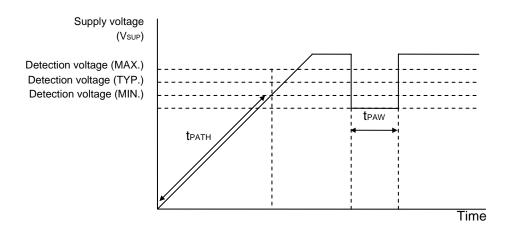

AC Characteristics

(Unless specified otherwise,	$T_{A} = -40$ to $+85^{\circ}C$, $6 V \le V_{SUP} \le 19 V$
------------------------------	--

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
SCKA cycle time	tксуа			400			ns
SCKA high-level width, low-level width	tкна, tkla			tксүа/2			ns
SIA setup time (to SCKA↑)	t sika			80			ns
SIA hold time (to SCKA \downarrow)	t KSIA			50			ns
Delay time from SCKA [↑] to SOA output	t KSOA	$C = 50 \text{ pF}^{\text{Note}}$	4.0 V ≤ VRS ≤ 5.25 V			120	ns
			2.7 V ≤ VRS < 4.0 V			120	ns
SSA high-level width	t SHA			TBD			ns
Delay time from SSA \downarrow to SCKA \uparrow	tska			TBD			ns
Delay time from SCKA \downarrow to SSA \uparrow	t KSA			TBD			ns

Note C is the load capacitance of the SOA output line.

SPI Transfer Clock Timing

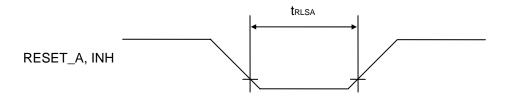


POCA Circuit Characteristics

(Unless specified otherwise, $T_A = -40$ to $+85^{\circ}C$, $V_{SS} = 0$ V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOCA		2.7	3.0	3.3	V
Power voltage rise inclination	t ратн	VDD: 0 V \rightarrow change inclination of VPOCA	0.5			V/ms
Minimum pulse width	t PAW		200			μs

POCA Circuit Timing

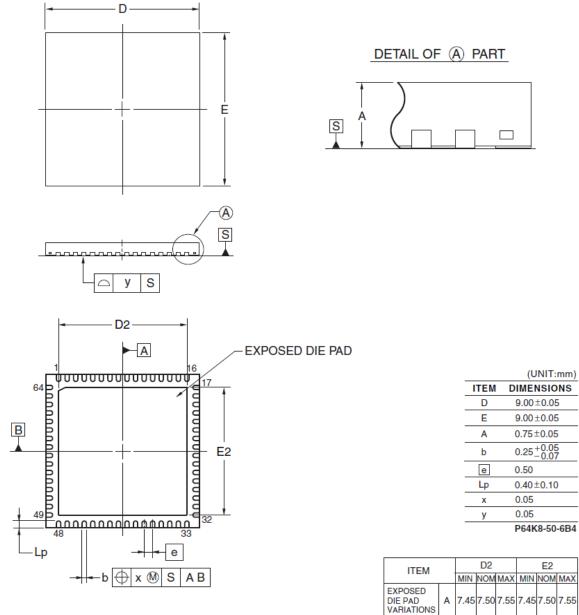

<R> Low Voltage Detection Circuit Characteristics

		(Unless specified otherwise	e, $T_{A} = -40 t$	o +85°C,	$6 \text{ V} \leq \text{V}_{\text{SUP}}$	≤19 V)
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Low voltage detection voltage	Vlvia	VLVIA = VRS	4.0	4.2	4.4	V

Reset Circuit Characteristics

		(Unless specified otherwis	se, $T_{A} = -40 t$	o +85°C,	$6 \text{ V} \leq \text{V}_{\text{SUP}}$	≤19 V)
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
RESET_A, INH high-level input voltage	VIHW1	RESET_A, INH	0.7 Vrs			V
RESET_A, INH low-level input voltage	VILW1	RESET_A, INH	0		0.3 Vrs	V
RESET_A, INH minimum low-level width	t rlsa	RESET_A, INH	10			μS
RESET_A, INH high-level input leak current	Ilihw1	RESET_A, INH, VI = VSUP			3	μΑ
RESET_A, INH low-level input leak current	Ililw1	RESET_A, INH, VI = GND	-3			μΑ
RESET_A, INH pull-up resistance	Rreset_a	RESET_A, INH	50	100	200	kΩ

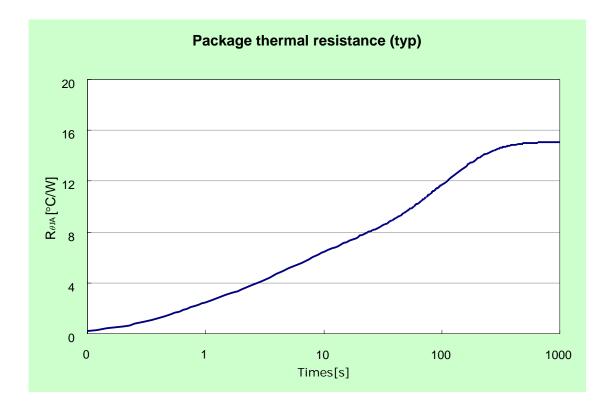
RESET_A, **INH** Input Timing


Overheat Detector Characteristics

	(U	nless specified other	wise, Ta =	$-40 \text{ to } +85^{\circ}$	$C, 6 V \le Vs$	UP $\leq 19 \text{ V}$)
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Overheat detection temperature	VRth		(150)	(170)	(200)	°C

Remark The value in parenthesis is the design target value, and not confirmed by the shipping test.

12. Package Drawing



© 2010 Renesas Electronics Corporation. All rights reserved.

<R> APPENDIX A PACKAGE THERMAL RESISTANCE

Conditions

Substrate size:	76.2 x 114.3 mm, t = 1.60 mm
Trace:	Four-layer (thickness of trace: 70 / 35 / 35 / 70 μ m)
Material:	FR-4

APPENDIX B CALCULATION EXAMPLE OF TOTAL POWER DISSIPATION AND JUNCTION TEMPERATURE

Calculation example of total power dissipation

```
Condition of use

V_{SUP} = 16 V

I_{RO} = 20 mA

LIN = Normal mode (Recessive)

T_A = 85^{\circ}C

Microcontroller block) VRO = 5 V, IbD1 = 3.2 mA

P1 = VRO × IbD1 = 16 mW

Power supply circuit. LIN transceiver) VsuP = 16 V, IsuP3 = 3 mA

P2 = VsuP × IsuP3 = 48 mW

Drop out voltage) VsuP = 16 V, VRO = 5 V, IRO = 20 mA

P3 = (VsuP - VRO) × IRO = 220 mW

Half bridge) Ron = 1 \Omega, Iload = 0.5 A, 6 ch

P4 = Ron × Iload<sup>2</sup> × 6 = 1.5 W

Total)

PD = P1 + P2 + P3 + P4 = 1.784 W
```

Calculation example of junction temperature

```
T_{J} = (PD \times R_{\theta JA}^{Note}) + T_{A}= 111.47^{\circ}C
```

Note R_{0JA} use a value greater than or equal to 400 sec in Package thermal resistance characteristic (APPENDIX A).

Caution Use this operation within a range that Tjmax value (150 °C).

<R> APPENDIX C REVISION HISTORY

C.1 Major Revisions in This Edition

	(1/2)
Page	Description
1. Outline	
p.2	Modification of 1.1 Features
p.4, 5	Modification of 1.4 Pin Configuration (Top View)
p.6 to 8	Modification of 1.5 Block Diagram
p.9, 10	Modification of 1.6 Outline of Functions
2. Pin Functions	\$
p.11	Modification of 2 (1) Port and alternate function pins
p.12	Modification of Table 2-1. Pin I/O Buffer Power Supplies
p.12, 13	Modification of 2.1 (1) Port pins
p.14	Modification of 2.1 (2) Non-port functions
p.17	Modification of 2.2 Analog Part Pins
p.20	Modification of 2.3.3 P20 to P24 (Port 2)
p.24	Addition of 2.3.8 P130 (port 13), Modification of 2.3.9 AVREF, AVss, VDD, Vss
p.26	Modification of 2.3.19 SWI, 2.3.20 SWO
p.27	Addition of 2.3.31 IC
p.28-30	Modification of description and addition of note 4 in Table 2-3. Pin I/O Circuit Types
p.31, 33, 34	Modification of Figure 2-1. Pin I/O Circuit List
3. Microcontroll	er Functions
p.35	Modification of 3.1 Differences in Functions between µPD78F807x and 78K0/KC2
p.36	Modification of 3.2 Differences in Special Function Registers between µPD78F807x and 78K0/KC2
p.38	Modification of 3.3.1 Port mode register
p.39	Modification of 3.3.2 Port register, 3.3.3 Pull-up resistor option register
p.40	Modification of 3.3.4 Analog input channel specification register
p.41	Modification of 3.3.5 A/D port configuration register
4. Writing with F	Flash Programmer
p.50	Modification of Table 4-1. Wiring Dedicated Flash Programmer
5. Power Supply	/ Circuit
p.51	Modification of description in 5.4 Over Current Protection Function
p.52	Addition of caution in 5.6 External Dropper Auxiliary Function
p.53	Modification of Figure 5-2. Power Supply Circuit Application Example Using On-Chip P-ch MOS
p.54	Modification of Figure 5-3. Power Supply Circuit Application Example Using External NPN Transistor

Page	Description
6. LIN Transceive	r
p.55	Modification of description in 6.1 LIN Transceiver Function
p.56	Modification of Figure 6-2. Operation Mode Transition Diagram and Table 6-1. LIN Operation Mode Setting. Addition of caution in Table 6-1. LIN Operation Mode Setting
p.57	Modification of Table 6-2. Pin States in Each Port Mode
p.58	Modification of Table 6-3. Operation States of Each Analog Function Block
p.59	Modification of description in 6.2 Operation Modes
7. Half-Bridge Cir	cuit
p.63	Modification of description in 7. Half-Bridge Circuit
p.64	Modification of Mode transition diagram and Table 7-1. Operation State in Inhibit Mode
p.65	Modification of description in 7.2 Over Current Protection Function
10. Analog Reset	Function
p.80	Modification of Table 10–1. Operation State of Analog Function Blocks during Analog Reset and Table 10–2. State of Analog Block Function Pins Interconnected in Package
11. Electrical Spe	cifications ((A) Grade Products)
p.81, 82	Modification of 11.1 Absolute Maximum Ratings
p.85-87, 90, 91	Modification of 11.2 Microcontroller Block Electrical Characteristics
p.104, 109, 110, 112	Modification of 11.3 Analog Block Characteristics
APPENDEX A PA	ACKAGE HEAT-DISSIPATION
p.114	Addition of APPENDEX A PACKAGE HEAT-DISSIPATION
APPENDEX B CA	ALCULATION EXAMPLE OF TOTAL POWER DISSIPATION AND JUNCTION TEMPERATURE
p.115	Addition of APPENDEX B CALCULATION EXAMPLE OF TOTAL POWER DISSIPATION AND JUNCTION TEMPERATURE
APPENDEX C RE	EVISION HISTORY
p.116	Addition of APPENDEX C REVISION HISTORY

μPD78F807x Microcontroller with LIN Transceiver & Half-Bridge Drivers User's Manual: Hardware

Publication Date: Rev.2.00 Sep 27, 2012

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2809 Socti Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Cana Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-414, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-162-651-700, Fax: +44-1628-681-804
Renesas Electronics Europe Imited
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Disseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics China) Co., Ltd.
Th Floor, Quantum Plaza, No.27 ZhChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +88-10-8235-7679
Renesas Electronics Hong Kong Limited
Unit 801-1613, 16/F, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +862-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
37. No. 33, Fu Shing North Road, Taipel, Taiwan
Tel: +862-2487-5987-7889
Renesas Electronics Taiwan Co., Ltd.
37. No. 33, Fu Shing North Road, Taipel, Taiwan
Tel: +862-2487-5987-7889
Renesas Electronics Taiwan Co., Ltd.
37. No. 33, Fu Shing North Road, Taipel, Taiwan
Tel: +862-2487-5987-7889
Renesas Electronics Taiwan Co., Ltd.
37. No. 33, Fu Shing North Road, Taipel, Taiwan
Tel: +862-2487-5987-7889
Renesas Electronics Malagone Pie. Ltd.
38. Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +66-213-2000, Fax: +66-213-300
Renesas Electronics Malagsia Sdn.Bhd.
30. Hong Kong Kong, Honcor Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +66-23-7355-3737, Fax: +62-2-555-511

© 2012 Renesas Electronics Corporation. All rights reserved. Colophon 1.3 μPD78F807x Microcontroller with LIN Transceiver & Half–Bridge Drivers

