CC-RL C COMPILER FOR
RL78 FAMILY
CODING TECHNIQUES

CC-RL V.1.02.00

AGENDA

Introduction

Coding Techniques

Memory Models

Using Variables/Functions Information File

Page 3
Page 4
Page 16

Page 19

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Page 2

LENESAS

Introduction

» This document describes coding techniques to further reduce the code size or accelerate
execution even after optimization through option settings when using the CC-RL C compiler.

« Each amount of code reduction shown in this document only applies to the corresponding
example; the actual reduction will vary slightly between cases.

* The output assembly-language codes shown in this document are examples compiled with the
medium model and the code size precedence option (-Osize) specified. Note that the output
code will differ when a different type of optimization (default optimization or speed precedence
optimization) is specified.

This document uses the following tools and versions for description.
 CC-RL C compiler for the RL78 family V.1.02.00
e e2 studio integrated development environment V4.2.0.012

« CS+ integrated development environment V.3.03.00

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 3 | | z E N ESAS

Coding Technigues

Page 4 © 2015 Renesas System Design Co., Ltd. All rights reserved.

Effects of Coding Techniques

Effects on the output code size and execution speed when applying coding techniques

Coding Technique Execution Speed

Size of variables
Unsigned variables
saddr area

callt function

Alignment of structure variables
Bit fields and 1-byte variables

v

SNEBE \ B S

v': Effective; A: Not effective; X: Performance degraded

v

> X < <

AN

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Page 5

LENESAS

Size of Variables

 When using variables, specify the type having the minimum allowable size.
» This is because the RL78 devices excel in handling small-type variables.
 Example:

« C source program

void func(void) void func(void)
{ {
signed int i; signed char i;
for(i=0; i<10; i++) for(i=0; i<10; i++)
__nop(); __hop();
} }
» Output assembly-language program
Before Change After Change
movw ax, #0x000A 3 mov a, #0x0A 2
.BB@LABEL@1 1: .BB@LABEL@1 1:
nop 1 nop 1
addw ax, #OxFFFF 3 dec a 1
bnz $.BB@LABEL@1 1 2 bnz $.BB@LABEL@1 1 2
ret 1 ret 1
10 bytes 7 bytes
© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 6] 2 E N ES AS

Unsigned Variables

 Add "unsigned" for all data that never handle negative values.
* This is because the RL78 devices excel in handling unsigned variables.
 Example:

« C source program

Before Change After Change
signed int data0,datal; unsigned int data0,datal;
if(dataO > 10) datal++; if(dataO > 10) datal++;

e OQutput assembly-language program

movw ax, 'LOWW(_data0) 3 movw ax, 'LOWW(_data0) 3

Xor a, #0x80 2

cmpw ax, #0x800B 3 cmpw ax, #0x000B 3

skc 2 skc 2

incw 'LOWW(_datal) 3 incw 'LOWW(_datal) 3
13 bytes 11 bytes

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 7 | z E N ESAS

saddr Area (1/2)

 Usethe saddr qualifier or #pragma saddr declaration for frequently used external variables
and static variables within functions.

» Allocating variables in the saddr area improves the code.

» For a one-bit field especially, the __saddr qualifier or #pragma saddr declaration can be
expected to have a large effect.

» Alternatively, the variables/functions information file can be used to allocate variables to the
saddr area.

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 8 | | z E N ESAS

saddr Area (2/2)

o Example:
e C source program
typedef struct { typedef struct {

unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;
unsigned char b6:1;
unsigned char b7:1;

} BITF;

BITF dataO, datal;

data0.b4 = datal.bl;

» Output assembly-language program

} BITF;

unsigned char b0:1;
unsigned char b1:1;
unsigned char b2:1;
unsigned char b3:1;
unsigned char b4:1;
unsigned char b5:1;
unsigned char b6:1;
unsigned char b7:1;

__saddr BITF data0, datal;

data0.b4 = datal.bl;

movw hl,#LOWW (_datal)
mov1l CY,[hl].1 mov1l CY, _datal.l 3
movw hl,#LOWW (_data0)
mov1 [hl].4,CY mov1l _data0.4,CY 3
6 bytes

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Page 9

LENESAS

callt Function (1/2)

 Usethe callt qualifier or #pragma callt declaration for frequently called functions.

 The addresses of the functions to be called are stored in the callt table area [80H - BFH], and the
functions are called with a smaller-size code than that for direct function calls.

 Example:
e C source program

void func_sub(void) __callt void func_sub(void)

{ {

) |)

void func() void func()

{ {
func_sub(); func_sub();
func,:_sub(); func;_sub();

} }

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 10 [} 2 E N ESAS

callt Function (2/2)

o Example:

» Output assembly-language program

Before Change After Change
.SECTION .callt0,CALLTO

@ func_sub:
.DB2 func_sub 2
.SECTION .textf, TEXTF .SECTION .textf, TEXTF
_func: _func:
call Il func_sub 4 callt [@ func_sub] 2
call Il func_sub 4 callt [@_func_sub] 2
8 bytes 6 bytes

* Notes:
» Atable of addresses for function calls is generated (.calltO).
* Due to generation of this table, code size reduction is not effective for a function called only once.
o The CALLT instruction requires more clock cycles for execution than the CALL instruction.

» Alternatively, the variables/functions information file can be used to specify declarations of the functions to be
called through the CALLT instruction

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 11 [} 2 E N ESAS

Alignment of Structure Members (1/2)

* Inthe RL78 family of devices, reading or writing in word units cannot start from an odd address;
data for alignment is inserted by the default option setting so that 2-byte or larger members are
allocated to even addresses.

» Therefore, take care regarding the alignment of structure members and do not leave unused
space between members.

 Example:
e (C source program
struct { struct {

} data;

signed char a;

signed int b; signed char c;
signed char c; signed int b;
struct { struct {
signed int d; signed int d;
signed int e; signed int e;
HE H

} data;

signed char a;

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Page 12

LENESAS

Alignment of Structure Members (2/2)

o Example:

 Memory Allocation
Before Change: 10 bytes After Change: 8 bytes

(Upper address)

e
d
C
b
a

C
a - Data for alignment
© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 13]| 2 E N ESAS

(Lower address)

Bit Fields and 1-Byte Variable (1/2)

* When the size of a bit-field member is two or more bits, use the char type instead of a bit field
(two or more bits).

* Note that the size of RAM area used will increase when this is done.

 Example:
e (C source program
struct { unsigned char data;

unsigned char b0:1;
unsigned char b1:2;
} data;
unsigned char dummy; unsigned char dummy;

if(data.b1){ if(data){
dummy++; dummy++;

} }

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 14 [} 2 E N ESAS

Bit Fields and 1-Byte Variable (2/2)

o Example:
» Output assembly-language program
mov a, #0x06 2 cmpO 'LOWW(_data) 3
and a, |LOWW(data) 3
sknz 2 sknz 2
ret 1 ret 1
inc ILOWW(_dummy) 3 inc ILOWW(_dummy) 3
ret 1 ret 1
12 bytes 10 bytes

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 15 [} 2 E N ESAS

Memory Models

Page 16 ~ © 2015 Renesas System Design Co., Ltd. All rights reserved.

Memory Models (1/2)

» According to the specifications of the RL78 family, the sizes of the codes for function call and
data access differ depending on whether

» the program size is 64 Kbytes or larger

» the data size (including ROM data) is 64 Kbytes or larger.

* CC-RL provides the following two memory models.

Small model Program: 64 Kbytes or smaller; Data: 64 Kbytes or near near
smaller
Medium model Program: 64 Kbytes or larger; Data: 64 Kbytes or smaller far near

© 2015 Renesas System Design Co., Ltd. All rights reserved.

page 17 RRENESAS

Memory Models (2/2)

* For alarge program, select the medium model and add the ___near qualifier to frequently called
functions to reduce the code size.

* Note that when the __near or __ far qualifier is added to a function, the type of the pointer
variable that handles the qualified function should also be modified to match the type of the

function.

page 1 RRENESAS

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Using Variables/Functions Information
-lle

Using Variables/Functions Information File (1/3)

 Features
» Frequently used variables are allocated to the saddr area.
* Frequently called functions are handled as callt functions.

* In addition to the qualifiers (__saddr and __callt) and #pragma declarations (saddr and callt)
specified in the source files, the variables specified in the variables/functions information file
are allocated to the saddr area and the functions specified in the file are handled as callt

functions.
e How to use
» Specify the —vfinfo linker option to generate a variables/functions information file.
* Include the variables/functions information file at compilation in either of the following methods.
» Specify the file through the —preinclude compiler option.

e Use #include to include the file to each source file.

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 20 [} 2 E N ESAS

Using Variables/Functions Information File (2/3)

e Note

* When generating a variables/functions information file through the —vfinfo linker option, check
that the build process has been completed correctly and a load module file has been created.

* Linker option -vfinfo

e This option selects variables and functions for which code reduction works most effectively
based on their reference frequencies, adds declarations of saddr variables and callt functions

through #pragma directives to the selected variables and functions, and outputs them to a
header file (variables/functions information file).

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 21 [} 2 E N ESAS

Using Variables/Functions Information File (3/3)

 Example:

/* RENESAS OPTIMIZING LINKER GENERATED FILE yyyy.mm.dd */
[*** variable information ***/

#pragma saddr dataO /* count:10,size:1,near,tp0.0bj */

#pragma saddr datal /* count:5,size:1,near,tp0.0bj */

[* #pragma saddr datann */ /* count:1,size:1,near,tpl.obj */

[*** function information ***/

#pragma callt func_subO /* count:4,far,tp0.obj */

#pragma callt func_subl /* count:1,far,tp0.obj */

[* #pragma callt funcO */ /* count:1,far,tpl.obj */

B -

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 22 [| z E N ESAS

Using Variables/Functions Information File (e2 studio
1/2

[Project Explorer 52 = B
. {}: -
» (Generating a variables/functions information file automatically = =
4 |[=5 saddr_callt [HardwareDebug]| -
h, . .
I %%, Binaries
. Enable posmon optimization in the linker. > 5 Includes il
f o o 4 B sre
type filter text Settings e v w [@ cstart.asm
> Resource .
Builders i Tool Settings |.h Build Steps Build Artifa:tl Binary Parsersl @ Error Parsersl N F @ hdwinit.asm
4 C/C++ Build B @ iodefine.h
Build Variables 4 5 Common Optimization type: [No optimize i .
;::2::;1:';:::: Vers %: [C)PU Deletes variables/functions that are not referenced [@ saddr—ca”t—ﬁl'h
L EvICE
Device . @zmpm — . o [g saddr_callt.c
Environment 4 (2 Source Perform position optimization |iYes ..
stkinit.
;::ti‘;f @ﬁjtz‘g“ge Output folder for variables/functions information file ${CONFIGDIR:/S{ArtifactNamel} vii.h v @ init-asm
Tool Chain Editor @ Optimization —_——— I —— B @ tpﬂ.c
b C/Cr+ General (& Output Code B tpl.c 3
Project References (£ Miscellaneous E 3
Run/Debug Settings (5 MISRA C Rule Check 4 (= HardwareDebug
(& User
a B Assembler [E;' 1st
55
‘ béUI[Z:guage P E? src
e
g g:fjization Section to disable optimization £ 7 [ﬁ saddr—ca”t'abs - [rl?a'ﬂe]
& User [+ f& saddr_callt.x - [rl78/1e]
® L B
’ ?gt:rput |=| LinkerSubCormmand.tmp
- (8 Advanced L& makefile
'-%v |= makefilelst
< = . g {D:K:i Address range to disable optimization £ ®) o = rnakefile.Znd |
| |l saddr_callt_vfi.h
@ | |=| saddr_callt.map
[— W
. | @ sources.mk
mn
* Project name.h" is registered in the project tree. custom.bat i
N 1 | b

© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 23 [} 2 E N ESAS

Using Variables/Functions Information File (e2 studio)
(2/2)

Editing a variables/functions information file (after automatic generation)

Disable position optimization that was enabled in the step shown in the previous page in the

Import the automatically generated "Project name.h" file to the src folder.

Register the "Project name.h" file in [Include files at head of compiling units].

Build Variables

Change Toolchain Vers

Dependency Scan

Device

Environment

Logging

Settings

Tool Chain Editor

p C/C++ General

Project References
Run/Debug Settings

type filter text Setting: -
1 Resource
" = -
Builders i Tool Settings | .ﬁ' Build Steps I Build Artifact | Binary Parsers | @ Error Parsers
a C/C++ Build

a 5 Common
@& cou
(2 Device

-
[4 |LQ$" Source|

(2 Object
(2 Optimization
(2 Output Code
(2 Miscellaneous
(22 MISRA C Rule Check
(£ User
4 [Assembler
4 (2 Source
Language
@ Object
(2 Optimization
(£ User
a B4 linker

C

Include file directories

"STCINSTALL hinc”

Include files at head of compiling units

saddr_callt_ vfi.h

88 8§ L |y

aa 86

Macra definition

88 8§

[ok][cance |

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Page 24

LENESAS

Using Variables/Functions Information File (CS+) (1/2)

Generating a variables/functions information file automatically

Enable output of a variables/functions information file.

A, CC-RL Property E] E] E]

Specify execution start address Mo
Fill with padding data at the end of a section Mo
[Address setting for specified area of vector table Address setting for specified area of vectortable[]
Address setting for unused vector ares
ST

4 Vanablesfunchons information

Output variablesfunctions information header file Y&a[VFINFD)

Yariables/functions information header file name :%F‘mjectName % _vfih
Section

Venty

Message

Others

m

e

Dutput vanables funchons informabon header file
Selects whether to output a vaniables/functions information header file.
If fes” is selected in this field, executes commands in the following order. .

't,l Common Options A Compile Options /{ AszsembleOptions IS. Link Options leen-: Qutput Options AIID Header File Gen... / ¥

A
z

Project Tree 1 ox

@ 2 [E

BL78 G13 Tutorial Basic Operation CC (Project)”

% RSFL00LE (Microcentroller)

ACETRL (Build Tool) |

=¢, RL78 E1({Serial) (Debug Tool)
[P File
Eg---ﬂ Build tool generated files
----- @ cstart.asm

----- @ stkinit.asm

..... | iodefine.h

o[} 20— k&

‘Q r_main.c

‘E r_systeminit.c

‘EI r_cg_cgc.c

‘E r_Cqg_cgo_USernc

Q r_cg_port.c

EI r_cg_port_user.c

EI r_cg_timer.c

‘Q r_cg_tirmer_user.c
r_cg_macrodriver.h

Q r_cg_userdefine.h

. --_EI RL7E_G13_Tutorial_Basic_Operation_CC_vfi.h
* "Project name.h" is registered in the project tree.
4 1 _ | »
© 2015 Renesas System Design Co., Ltd. All rights reserved. Page 25] 2 E N ES AS

Using Variables/Functions Information File (CS+) (2/2)

« Editing a variables/functions information file (after automatic generation)
» Disable output of a variables/functions information file that was enabled in the step shown in
the previous page.

» Copy the "Project name.h" file to another folder (such as the source folder). (Although it can be
used without copying, when output of a variables/functions information file is enabled, the tool

overwrites and deletes the file.)

» Register the "Project name.h" file in [Include files at head of compiling units].

4, CC-RL Property (&) (2] =)+
Qutputs additional information for inter-moedule optimization No -
4 Preprocess
[Additional include paths Additional include paths[2]
o [EFE T e N include files at head of compiling units{1] B~
— [0] DefaultBuild\BL78_G13_Tutorial_Basic_Operation_CC_vfih | |
= TSCro dennmon Thacre cenmonto] | J
> Macro undefinition Macro undefinition[0]
4 Quality Improvement
Detect stack overflow MNo(MNone)
» Memory Model
» C Language il
[Character Fnend
Include files at head of compiling units
Specifies include files at head of compiling units.
This option corresponds to the -preinclude option of the corl command....
Common Opt'lonsli Compile Options I AsszembleOptions /{ Link Options A Hex Output Options /{ 1/0 Header File Generatio ... / ¥

rage 2 RRENESAS

© 2015 Renesas System Design Co., Ltd. All rights reserved.

Renesas System Design Co., Ltd.

© 2015 Renesas System Design Co., Ltd. All rights reserved.

	スライド番号 1
	Agenda
	Introduction
	スライド番号 4
	Effects of Coding Techniques
	Size of Variables
	Unsigned Variables
	saddr Area (1/2)
	saddr Area (2/2)
	callt Function (1/2)
	callt Function (2/2)
	Alignment of Structure Members (1/2)
	Alignment of Structure Members (2/2)
	Bit Fields and 1-Byte Variable (1/2)
	Bit Fields and 1-Byte Variable (2/2)
	スライド番号 16
	Memory Models (1/2)
	Memory Models (2/2)
	スライド番号 19
	Using Variables/Functions Information File (1/3)
	Using Variables/Functions Information File (2/3)
	Using Variables/Functions Information File (3/3)
	Using Variables/Functions Information File (e2 studio) (1/2)
	Using Variables/Functions Information File (e2 studio) (2/2)
	Using Variables/Functions Information File (CS+) (1/2)
	Using Variables/Functions Information File (CS+) (2/2)
	スライド番号 27

