LENESAS

-
o
o)
ﬁ\I
»
<
W)
>
-
)

CS+ V8.10.00

Integrated Development Environment
User’s Manual: RL78 Debug Tool

Target Device
RL78 Family

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev.1.00 2023.06

Notice

1.

10.

1.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home
electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

"High Quality":

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)’” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact Information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

© 2023 Renesas Electronics Corporation. All rights reserved.

How to Use This Manual

This manual describes the role of the CS+ integrated development environment for developing applications and sys-
tems for RL78 family, and provides an outline of its features.

CS+ is an integrated development environment (IDE) for RL78 family, integrating the necessary tools for the develop-
ment phase of software (e.g. design, implementation, and debugging) into a single platform.

By providing an integrated environment, it is possible to perform all development using just this product, without the
need to use many different tools separately.

Readers

Purpose

Organization

How to Read This Manual

Conventions

This manual is intended for users who wish to understand the functions of the CS+ and
design software and hardware application systems.

This manual is intended to give users an understanding of the functions of the CS+ to use
for reference in developing the hardware or software of systems using these devices.

This manual can be broadly divided into the following units.
1.GENERAL

2.FUNCTIONS
A.WINDOW REFERENCE

It is assumed that the readers of this manual have general knowledge of electricity, logic
circuits, and microcontrollers.

Data significance: Higher digits on the left and lower digits on the right
Active low representation: XXX (overscore over pin or signal name)

Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention

Remarks: Supplementary information

Numeric representation: Decimal ... XXXX

Hexadecimal ... OxXXXX

TABLE OF CONTENTS

GENERAL . . . 9

1.1 SUMMIAIY . . o ot e e e e e e e 9
1.2 FeatUres. . o e 9
FUNCTIONS. . . e 10

21 OVBIVIBW .« . ottt e e e e e e e 10
2.2 Preparation before Debugging.o e 12
221 Confirm the connectionto ahostmachine 12
2211 [ECUBE] . . . oottt e e e e 12
2212] e 12
2213 [B20] . .t 12
2214 [EZ EMUIALOr]. . . o oo 13
2215 [COM PO . .ot 13
22.1.6 [SImulator] . . . o 13

2.3 Configuration of Operating Environment of the Debug Tool 14
2.3.1 Selectthe debug toolto Use. 14
23.2 [IECUBE] . .t e 15
233] . o 16
234 [B20] . .o 17
235 [EZ EmMUIator] . ..o 18
2.3.6 [COM PO . et 19
2.3.7 [SImuUIator]. . . . 20
24 Applicable Debugging Methods 21
241 Debugging the FAA.o 21
25 Connect to/Disconnect from the Debug Tool 23
251 Connecttothe debugtool. 23
252 Disconnect from the debug tool 23
253 Connect to the debug tool using hot plug-in [E1][E20]t 23
26 Download/Upload Programst 26
261 Execute downloading 26
2.6.2 Advanced downloading. 28
2.6.2.1 Change download conditions for load modulefiles. 29
26.2.2 Add download files (*.hex/*.mot/*.bin) 30
26.2.3 Perform source level debugging with files other than the load module file format 31
2.6.3 Execute uploading e 32
2.7 Display/Change Programs. 34
271 Display source files.o e 34

2.7.2 Display the result of disassembling e 34

2721 Change display Mode 35

2722 Change display format. 36
2.7.2.3 Move to the specified address. e 36
2724 Move to the symbol defined location. 36
2725 Save the disassembled textcontents 37
2.7.3 Run a build in parallel with other operations. 38
274 Perform line assembly 38
2741 Edit instructions 38
2742 Edit COode . . .o 39
2.8 EXecUte Programs 40
2.8.1 Reset microcontroller (CPU). e 40
2.8.2 EXECULE PrOgrams.o 40
2821 Execute after resetting microcontroller (CPU). 41
2822 Execute from the currentaddress 41
2.8.2.3 Execute after changing PC value e 42
2.8.3 Execute programs in StepsS 42
2.8.3.1 Step in function (Step in execution). 43
2.8.3.2 Step over function (Step over execution). 43
2.8.3.3 Execute until return is completed (Return outexecution) 43
29 Stop Programs (Break) 44
291 Configure the break function. 44
2.9.1.1 [IECUBE] . . . oot e 45
29.1.2 [E1V/[E20/[EZ Emulator]l/[COM PO]. oottt e e e e e 45
29.1.3 [SIMUIAtOr] . . . 46
29.2 Stop the program manually. 46
293 Stop the program at the arbitrary position (breakpoint) 46
2.9.3.1 Setabreakpoint e 47
2932 Edit a breakpoint 48
2933 Delete a breakpoint e 48
294 Stop the program at the arbitrary position (break event) 48
29.41 Seta break event (execution type) e 48
2942 Edit a break event (execution type). 50
2943 Delete a break event (execution type). 50
2.9.5 Stop the program with the access to variables/SFRs 50
2.9.51 Setabreak event (ACCESS tYPE)o oo 50
2952 Edit a break event (access type)o 54
2953 Delete a break event (access type).o 54
2.9.6 Stop the program when an invalid execution is detected [I[ECUBE]. 54
297 Other break CauSesot 55
210 Display/Change the Memory, Registerand Variable 56
2.10.1 Display/change the memory 56

2.10.1.1 Specify the display position 56

2.101.2 Change display format of values. 57
2.10.1.3 Modify the memory contents e 58
2.10.1.4 Display/modify the memory contents during program execution. 59
2.101.5 Search the memory contents. e 62
2.10.1.6 Modify the memory contents in batch (initialize) 63
2.10.1.7 Save the memory contents e 64
2.10.2 Display/change the CPU register e e e e 65
2.10.2.1 Change display format of values. 66
2.10.2.2 Modify the CPU register contents 66
2.10.2.3 Display/modify the CPU register contents during program execution. 66
2.10.24 Save the CPU registercontents i e e 66
2.10.3 Display/change the SFR. 68
2.10.3.1 Searchfora SFR. 68
2.10.3.2 Organize SFRS 68
2.10.3.3 Change display formatof values. e 69
2.10.34 Modify the SFR contents 69
2.10.3.5 Display/modify the SFR contents during program execution. 70
2.10.3.6 Save the SFR CONteNtSo 70
2.104 Display/change global variables/static variables 70
2.10.5 Display/change local variables 70
2.10.5.1 Change display format of values. 71
2.10.5.2 Modify the contents of local variables 71
2.10.5.3 Save the contents of local variables 72
2.10.6 Display/change watCh-expressions 72
2.10.6.1 Register a watCh-expression 73
2.10.6.2 Organize the registered watch-expressions 74
2.10.6.3 Edit the registered watch-expressions. e 74
2.10.6.4 Delete a watCh-eXpression e 74
2.10.6.5 Change display format of values. 75
2.10.6.6 Modify the contents of watch-expressions. 75
2.10.6.7 Display/modify the contents of watch-expressions during program execution 76
2.10.6.8 Export/import watCh-expressions e 76
2.10.6.9 Save the contents of watCh-expressions. e 77
2.1 Display Information on Function Call from Stack. 78
2111 Display call stack information e 78
211141 Change display formatof values. 78
211.1.2 Jumptothe source line. e 79
21113 Display local variables. 79
21114 Save the contents of call stack information. 79
212 Collect Execution History of Programs 80
2121 Configure the trace operation 80
212141 [IECUBE] . . . oottt e e e 80

21212 [E1)[E20/[EZ EMUIatorV[COM POML. oottt e e e e e 81

212.1.3 [Simulator]o 82
2.12.2 Collect execution history until stop of the execution. 83
212.3 Collect execution history in @ section 83

2.12.31 SetaTrace eVent 83

21232 Execute the program 86

21233 EditaTrace event. 86

21234 Delete a Trace @VeNnt.o e 86
2124 Collect execution history only when the condition is met [[ECUBE][Simulator] 86

212.41 Seta Point Trace eVent. e 86

2.12.4.2 Execute the program e 88

21243 Edita Point Trace event 88

21244 Delete a Point Trace event e 88
2.12.5 Stop/restart collection of execution history [[ECUBE][Simulator] 89

2.12.51 Stop collection of execution history temporarily. 89

2125.2 Restart collection of execution history. 89
212.6 Display the collected execution history. e 89

2.12.6.1 Change display Mode e 89

2.12.6.2 Change display formatof values. e 90

2.12.6.3 Link with other panels 90
2127 Clear the trace MemMOrY e e e 91
2.12.8 Searchthetrace data 91

2.12.8.1 Search in the instruction level 91

212.8.2 Searchinthe source level. 93
2129 Save the contents of execution history. 95

213 Measure Execution Time of Programs. it 97
2.13.1 Configure the timer operation. 97

2.13.11 [IECUBE]ot 97

2.131.2 [SImUIatOr] . . . e 97
2.13.2 Measure execution time until stop of theexecution 97
2.13.3 Measure execution time in a section [[ECUBE][Simulator]. 98

2.13.3.1 SetaTimer Result event. 98

213.3.2 Execute the program 99

21333 Edita Timer Result event 100

21334 Delete a Timer Result event 100
2134 Measurable time ranges 100

214 Measure Coverage [IECUBE][SImulator].o e 101
2141 Configure the coverage measurementt 101

21411 [IECUBE] . . . ot 101

214.1.2 [SImuUIator] . . . o 101
214.2 Display the coverage measurementresult 103

215 Set an Action into Programs e 105

2151 INSet PNt . . o e 105

2.16 Manage Events 107
2.16.1 Change the state of set events (valid/invalid). 107
2.16.2 Display only particular event types 108
2.16.3 Jumptothe event address e 108
2.16.4 Edit detailed settings of events. 109

2.16.4.1 Edit execution-related events 109
2.16.4.2 Edit access-related events 110
2.16.4.3 Edit combination conditions of events [E1][E20] 113
2.16.5 Delete events e 114
2.16.6 Write comment to eVents 114
2.16.7 Notes for setting events 114
2.16.7.1 Maximum number of enabled events 114
2.16.7.2 Event types that can be set and deleted during execution 115
2.16.7.3 Oher NOtES o 116

217 Use HoOK FUNCHONo e e 118

218 Measuring Current Consumption [E2][Simulator] 120

2.19 Use the Simulator GUI [Simulator]. 128
2.19.1 Check the 1/0 waveform of the microcontroller. 128
219.2 Input signals to the piNso 129
2.19.3 Perform serial communication 129
2.19.4 Use buttons, LEDs, level gauges, and othercomponents 130

2.20 About INpUt ValUe. 131
2.20.1 INPUL TULE. . . 131
2.20.2 Symbol name completion function e 135
2.20.3 Icons forinvalid INpuUt 136

2.21 Saving and Restoring the States of Debug Tools. 137

2.22 RL78 Instruction Simulator [Simulator] e 138

A. WINDOW REFERENCE. e e 140

A1 DS Pl ON . . .o 140

Revision Record C-1

CS+V8.10.00 1. GENERAL

1. GENERAL

CS+ is a platform of an integrated developing environment for RH850 family, RX family, V850 family, RL78 family,
78KOR microcontrollers, 78K0 microcontrollers.

CS+ can run all the operations needed for developing the programs such as designing, cording, building, debugging,
and flash programming.

In this manual, the debugging is explained out of those operations needed for the program development.

Caution When the E2 emulator Lite (abbreviated name: E2 Lite) is used, please read references to "E1" in this
manual as also meaning "E2 Lite".
When the E2 emulator (abbreviated name: E2) is used, please read references to "E1" in this manual as
also meaning "E2".

In this chapter, an overview of debugging products that CS+ provides is explained.

1.1 Summary

You can effectively debug/simulate the program developed for the RL78 family, using the debugger which CS+ provides.

1.2 Features

The following are the features of the debugger provided by CS+.

- Connecting to the various debug tools
A pleasant debugging environment for target systems is provided by connecting to the full-spec emulator (IECUBE),
the on-chip debugging emulator (E1/E20/EZ Emulator), COM Port and Simulator.

- C/C++ source text and disassembled text are shown mixed
The C/C++ source text and the disassembled text are shown mixed on the same panel.

- Source level debugging and instruction level debugging
The source level debugging and the instruction level debugging for a C/C++ source program can be done.

- Support of flash self programming emulation (Code flash)
Flash self programming emulation can be performed with IECUBE.

- Data flash memory writing function
When the selected microcontroller incorporates the data flash memory, the contents of data flash memory can be dis-
played and modified by the same access method as an ordinary memory operation (except for Simulator).

- Real-time display update function
The contents of memory, registers and variables are automatically updated not only when the program execution is
stopped, but also in execution.

- Save/restore the debugging environment
The debugging environment such as breakpoints, event configuration information, file download information, display
condition/position of the panel, etc. can be saved.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 9 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2. FUNCTIONS

This chapter describes a debugging process of CS+ and main functions for debugging.

2.1 Overview

The basic debugging sequence for programs using CS+ is as follows:

(1) Start CS+
Launch CS+ from the [Start] menu of Windows.

Remark For details on how to start CS+, see "CS+ Integrated Development Environment User's Manual:
Project Operation".

(2) Seta project
Create a new project, or load an existing one.

Remark For details on "Set a project”, see "CS+ Integrated Development Environment User's Manual: Proj-
ect Operation".

(3) Create aload module
Create a load module by running a build after setting of the active project and the build tool to be used.

Remark For details on "Create a load module" with CC-RL, see "CS+ Integrated Development Environment
User's Manual: Project Operation”.

(4) Confirm the connection to a host machine
Connect the debug tool to be used to a host machine.

(5) Select the debug tool to use
Select the debug tool to be used in a project.

(6) Configure operating environment of the debug tool
Configure the operating environment of the debug tool selected in steps (5).

- [IECUBE]

- [E1]

- [E20]

- [EZ Emulator]
- [COM Port]

- [Simulator]

(7) Connect to the debug tool
Connect the debug tool to CS+ to start communication.

(8) Execute downloading
Download the load module created in steps (3) to the debug tool.

(9) Display source files
Display the contents of the downloaded load module (source files) on the Editor panel or Disassemble panel.

(10) Execute programs
Execute the program by using the operation method corresponding to a purpose.
If you wish to stop the program at the arbitrary position, set a breakpoint/break eventN°® pefore executing the pro-
gram (see "2.9.3 Stop the program at the arbitrary position (breakpoint)", "2.9.4 Stop the program at the arbitrary
position (break event)", or "2.9.5 Stop the program with the access to variables/SFRs").

Note These functions are implemented by setting events to the debug tool used.
See "2.16.7 Notes for setting events", when you use events.

(11) Stop the program manually
Stop the program currently being executed.
Note that if a breakpoint or a break event has been set in steps (10), the program execution will be stopped auto-
matically when the set break condition is met.

(12) Check the result of the program execution
Check the following information that the debug tool acquired by the program execution.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 10 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

(13)

(14)

(15)

- Display/Change the Memory, Register and Variable
- Display Information on Function Call from Stack

- Collect Execution History of ProgramsNete

- Measure Execution Time of ProgramsNote
- Measure Coverage [[ECUBE][Simulator]
Note These functions are implemented by setting events to the debug tool used.
See "2.16.7 Notes for setting events", when you use events.
Debug the program, repeating steps (9) to (12) as required.
Note that if the program is modified during debugging, steps (3) and (8) also should be repeated.

Remark 1. Other than the above, you can also check the result of the program execution by using the following
functions.

- Set an Action into Programs

- Use Hook Function

- Use the Simulator GUI [Simulator]
Remark 2. The acquired information can be saved to a file.

- Save the disassembled text contents

- Save the memory contents

- Save the CPU register contents

- Save the SFR contents

- Save the contents of local variables

- Save the contents of watch-expressions

- Save the contents of call stack information

- Save the contents of execution history

Execute uploading
Save the program (the memory contents) to a file in the arbitrary format (e.g. Intel HEX file, Motorola S-record file,

binary file, and etc), as required.

Disconnect from the debug tool
Disconnect the debug tool from CS+ to terminate communication.

Save the project file
Save the setting information of the project to the project file.

Remark For details on "Save the project file", see "CS+ Integrated Development Environment User's Man-
ual: Project Operation”.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 11 of 413

Jun 01

, 2023

CS+V8.10.00 2. FUNCTIONS

2.2 Preparation before Debugging

This section describes the preparation to start debugging the created program.

2.2.1 Confirm the connection to a host machine

Connection examples for each debug tool are shown.

2.2.1.1 [IECUBE]
2.2.1.2 [E1]

2.2.1.3 [E20]

2.2.1.4 [EZ Emulator]
2.2.1.5 [COM Port]
2.2.1.6 [Simulator]

2.2.1.1 [IECUBE]

Connect a host machine and IECUBE. If required, connect a target board, too.
See IECUBE User's Manual for details on the connection method.

Figure 2.1 Connection Example [IECUBE]

ﬁﬁ&ﬂmﬁ
% - = 'i—-—l- ;E_..- n“'a-"tk,d- §
Ded?cated adapter “‘__‘_-._ " USB interface cable : "-'_'F,J
Dedicated probe o Host machine ™
’ IECUBE CS+
Target board

2.2.1.2 [E1]

Connect a host machine and E1. If required, connect a target board, too.
See E1 User's Manual for details on the connection method.

Figure 2.2 Connection Example [E1]

. M o *"E
Dedicated probe - USB interface cable

’ ue:;J Host machme
E1
Target board CS+

Caution Only serial communications are supported as the communication method with the target board (JTAG
communications is not available).

2.2.1.3 [E20]

Connect a host machine and E20. If required, connect a target board, too.
See E20 User's Manual for details on the connection method.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 12 of 413
Jun 01, 2023

CS+V8.10.00

2. FUNCTIONS

Figure 2.3 Connection Example [E20]

G’M

w u@m‘ﬁ‘d

r |

Dedicated probe = USB interface cable
\"—"'f'-‘ Host machlne
E20 s
+
Target board
Caution Only serial communications are supported as the communication method with the target board (JTAG

communications is not available).

2.2.1.4 [EZ Emulator]

Connect a host machine and an evaluation kit
See EZ Emulator User's Manual for details on the connection method.

Figure 2.4 Connection Example [EZ Emulator]

—

Evaluation kit

5

USB interface cable

A ==

Host machine @

CS+

2.2.1.5 [COM Port]

Connect the host machine to the target board via a commercially available USB serial converter.

2.2.1.6 [Simulator]

A host machine is only needed for debugging (emulators are not needed).

Figure 2.5 Connection Example [Simulator]

@
Host machine

CS+

R20UT5301EJ0100 Rev.1.00
Jun 01, 2023

RENESAS

Page 13 of 413

CS+V8.10.00 2. FUNCTIONS

2.3 Configuration of Operating Environment of the Debug Tool

This section describes the configuration of the operating environment for each debug tool.

2.3.1 Select the debug tool to use

You can configure the operating environment in the Property panel corresponding to the debug tool to use.

Therefore, first, select the debug tool to be used in a project (the debug tool to be used can be specified in the individual
main projects/subprojects).

To select or switch the debug tool, use the context menu shown by right clicking on the [RL78 Debug tool name (Debug
Tool)] node on the Project Tree panel.

Figure 2.6 Select/Switch Debug Tool to Use

Project Teee | % |
- e - W
2% Sarnple [Project)

E RSFIM0LE {Microcantraller)

AL CC-RL (Bustd Teaed)
J PLTE Simulator (Debun Too

s [File | Liing Debug Tasl rl
B Property

L7B [ECLEE

R

RLTE £ Lie
RL7E Ed[Serial)
[

R

LTE E2D(S=nal)
LTE EL Ermualator

[»] ra7e simulate

If the Property panel is already open, click the [RL78 Debug tool name (Debug Tool)] node again. The view switches to
the Property panel of the selected debug tool.
If the Property panel is not open, double-click the above mentioned node to open the corresponding Property panel.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 14 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2.3.2 [IECUBE]

Configure the operating environment on the Property panel below when using IECUBE.

Figure 2.7 Example of Property Panel [IECUBE]

Property E3
23, RL78 IEGUBE Property 2| =)+
4 {Internal ROM/RAM
Size of mternsl ROMEBwies] Bl
Size of mternal Ra[Eyvtes] 4095
Size of DataFlash memory [KByte=s] L]
d Clock
Man clock sowrce Cignerate by emulator
blain chck frequercy [FEE] 400
Sub clock source Generate by amulator
Sub clock freguency[kHz] 22768
4 Gonnectionwith Tareet Boand
Caormectng with target board o
Internal ROMARAM
\iConnec.... | Debug T.. [FlashSel. | DataFlas.. Downloa.. [Hook Tra.. /=

Follow the steps below by selecting the corresponding tab on the Property panel.

[Connect Settings] tab

[Debug Tool Settings] tab

[Flash Self Emulation Settings] tab [[ECUBE]
[DataFlash Emulation Settings] tab [I[ECUBE]
[Download File Settings] tab

[Hook Transaction Settings] tab

R20UT5301EJ0100 Rev.1.00 ENESAS Page 15 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2.3.3 [E1]

Configure the operating environment on the Property panel below when using E1.

Figure 2.8 Example of Property Panel [E1]

Property |
Sul BLTR EWSarial) Property & =+
Size aof internsl FROMEEvtes] 12
Size of internal RAM[Bries] g192
Size of DataFlazh mamory[KBytas)]
w Glock
fsir chack frequency [MHz] Usme miemal chck
Sub chok frequencylkHz] Uzne mdemal chick
onitar clock Swetem

Gonneclion with Emulator
Ermulator zerial Ha
* Cronnection with Tanget Board
Possar tarmet from the smulator DM 200ma) Ma

w Flazh
Security 10 noanodanooo0oaa00Nman
Permit flash programming ez
Lee wide vollage mode e
Eraze {lazh ROM wihen sterling Ma
¥ Hot Plug-n
Intemal ROMARAM

Follow the steps below by selecting the corresponding tab on the Property panel.

[Connect Settings] tab

[Debug Tool Settings] tab
[Download File Settings] tab
[Hook Transaction Settings] tab

R20UT5301EJ0100 Rev.1.00 ENESAS Page 16 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2.3.4 [E20]

Configure the operating environment on the Property panel below when using E20.

Figure 2.9 Example of Property Panel [E20]

08T Ed
cul RLTE E20(Serial) 7 OMT 4 8 -+
ize of mbernal FOMIEEvies] 156
Size of intarnal RAK[Byiez] JnLan
Size of DataFlach me mory[KBytes)]
w Glock
Pelair chack frequency [MHz] Lzng miemal chick
Sub clok frequencykHz] Iking mtermal chck
Manitar clock Swstem

w Connecton with Emulsbor
Ermulator serial Mo

 Flash
Secwrilty 1D [heE] DO@0DOSO00G000@00 K00
Fermt tlash programming Tes
Uze wide vollage mode ez
Erzze flash ROM wiben starling Ia
» Hot Plug=n
Internal ROMARAM

Follow the steps below by selecting the corresponding tab on the Property panel.

[Connect Settings] tab

[Debug Tool Settings] tab
[Download File Settings] tab
[Hook Transaction Settings] tab

R20UT5301EJ0100 Rev.1.00 ENESAS Page 17 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2.3.5 [EZ Emulator]

Configure the operating environment on the Property panel below when using EZ Emulator.

Figure 2.10 Example of Property Panel [EZ Emulator]

Property E
S5 RLTE EZ Emulator Property B -
s {Tnternal ROM/RAM
Size of inlerna F'.'TI-':'_.“'E:}'::*:.'] 4
Sipe of internal BAMIEyt=z] LOgE
Size of DataFlash mamory[EBybes] ¥
a Glock
Main clock frequency [MHz] sire miternal clack
Sub chck frequencyllHz] lzing mtemal chck
Mionitor clock Systam

2 Conneclion with Tanget Board
Paveer tareet from the amulsior (MSH 200m&) Mo

4 Flash
Sacurity [0 [FE=] 00000000000000000000
Permil {lash pragramming hCH
Llze wide wolisze mods ez
Eraze flagh ROM when starting i
Internal ROM/RAM

\Connect Setti... ! Debug Tool Set . ¢ Download Ale 5. 4 Hook Tranzacti_. / =

Follow the steps below by selecting the corresponding tab on the Property panel.

[Connect Settings] tab

[Debug Tool Settings] tab
[Download File Settings] tab
[Hook Transaction Settings] tab

R20UT5301EJ0100 Rev.1.00 ENESAS Page 18 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS
2.3.6 [COM Port]
Configure the operating environment on the Property panel below when using COM Port.
Figure 2.11 Example of Property Panel [COM Port]
Property [
2 ALT3COM Port Property = ||
| Internal ROMAAM
Size of internal ROMKEyias] 128
Size of internal FLAM|Byies] 16324
Size of DataFlash memaory[KBytes] 8
w Clock
Main clock frequency [MHz] Laing intemal clock
Sub clock freguency(kHz] Laing intemal clock
Monitor chock Symtesm
+ Connectionwith Tangel Baard
Commumication port
Fesed control pin DTR
+ Flash
Sacurity D "] 00000000000000000000
Permat flash programming Yea
Lise wide voltags mode Yea
Erase flash ROM when starting Mo
Liging the flash salf programming Na
Internal ROMRAM
| [Connect Settings, | Debug Tool Settings | Download File Settings I.J' Hook Transaction Settings J."' -

Follow the steps below by selecting the corresponding tab on the Property panel.

[Connect Settings] tab

[Debug Tool Settings] tab
[Download File Settings] tab
[Hook Transaction Settings] tab

R20UT5301EJ0100 Rev.1.00 ENESAS
Jun 01, 2023

Page 19 of 413

CS+V8.10.00 2. FUNCTIONS

2.3.7 [Simulator]

Configure the operating environment on the Property panel below when using Simulator.

Figure 2.12 Example of Property Panel [Simulator]

Property]
il RL78 Simulator Property 2| [=][+]
4 {Internal ROM/RAM

Size of mternal FOKKEyies) hid
Size of intarnal BAM[Bytes] 4005
4 Clock
Plain clack frequarcy [MHz] Lno
Sub clock frequencykHz] 2270
Select Timer/ Trace chok frequeancy CPU clock frequency
il af Times# Trace clack frequency MHz

Timerd Trace clock frequency
4 Configuration
Uee simulator configusation Tile o

Internal ROM/RAM

/ Download Flle 5./ Hook Transactl. . | =

Follow the steps below by selecting the corresponding tab on the Property panel.

[Connect Settings] tab

[Debug Tool Settings] tab
[Download File Settings] tab
[Hook Transaction Settings] tab

Remark 1. When the simulator of the selected microcontroller supports peripheral function simulation, it simulates
the peripheral functions for the given type of microcontroller.When Simulator to be used corresponds to
peripheral function simulations, you can use the Simulator GUI. See "2.19 Use the Simulator GUI [Simu-
lator]" for details on the Simulator GUI. Refer to the release note for details on the peripheral function
simulation.

Remark 2. Refer to the 2.22 RL78 Instruction Simulator [Simulator] for details on the Instruction simulation.

Remark 3. When the selected microcontroller incorporates a flexible application accelerator (FAA), the RL78
instruction simulator also simulates the FAA. For details on the function of simulating the FAA, refer to the
release note for the RL78 simulator which handles simulation of the peripheral functions.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 20 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2.4 Applicable Debugging Methods

This section describes debugging methods which are applicable to debugging specific facilities of RL78 family devices.

2.4.1 Debugging the FAA

2.4.1 Debugging the FAA

This section describes how to enable this debugging facility, operation of its various functions, and points for caution on
using the FAA debugging facility when the selected microcontroller incorporates an FAA.

Some descriptions include reference to the state of the FAA in the following ways, which are similar to the state
indicators in the Main window.

Table 2.1 FAA States

Item FAA state
Standby A clock signal is not being supplied to the FAA.
Disable FAA operation disabled
Sleep Low power consumption mode

- Enabling FAA debugging
Make the following settings when debugging is to cover code for the FAA.

- [FAA] category on the [Connect Settings] tabbed page of the [Property] panel
Select [Yes] for the [Debug FAA] property.
Making the above setting enables selecting the FAA as the target for debugging on the status bar or in the

[Debug Manager] panel of the Main window.

- [Download] category on the [Download File Settings] tabbed page of the [Property] panel
Specify the name defined for the code section in the source file containing the FAA code as the [Specify code
section name defined in FAA source file] property.
Specify the name defined for the data section in the source file containing the FAA code as the [Specify data
section name defined in FAA source file] property.

Making the above settings enables selecting the FAA as the target for debugging and allows debugging opera-
tions such as stepped execution at the FAA source level with the FAA source code displayed in the [Editor]
panel and address information displayed in the address column.

- Operation of the various functions
When the FAA is selected as the target for debugging, each facility behaves as described below.

(1) Controlling the execution of programs
- When the execution of a program is started or stopped, only execution by the FAA is started or stopped.
- Synchronous execution by the CPU is not started or stopped.

- However, when [Yes] is selected for the [Stop FAA when stopping] property in the [Break] category on the
[Debug Tool Settings] tabbed page, you can specify whether the FAA is or not to be stopped when the CPU is
stopped.

- Step execution is only applicable to the FAA.

- If a clock signal is not being supplied to the FAA or its operation is prohibited by the FAA setting of the operation
enable bit (SYSC.ENB), starting execution of the program is not possible. Other forms of debugging operation
such as step execution also become impossible.

- A software reset is only applicable to the FAA, not to the MCU as a whole.
(2) Events

- Hardware breaks (four points) and an action event

R20UT5301EJ0100 Rev.1.00 ENESAS Page 21 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

- If the FAA is stopped after detecting a hardware break, the CPU is not synchronously stopped.
(3) Memory
- The [Instruction code space] and [Data space] of the FAA can be displayed in the [Memory] panel.
- The display is not updated during execution of a program.
- You can specify the spaces for display in the [Memory 1] to [Memory 4] panels by making the following settings.

- [Memory] category on the [Debug Tool Settings] tabbed page of the [Property] panel
Specify the spaces which are to be displayed as [Memory n] in the [FAA memory space] property.

- Values are displayed in the [Watch] panel as follows.

- Specifying the address of an immediate value
The [Watch n] panels are displayed in accordance with the [FAA memory space] property.

- Specifying a label
A label is displayed in accordance with the memory space (instruction code space or data space) to which the
label belongs.

(4) SFR
Only those SFRs which are accessible by the FAA are displayed.
The FAA pointer and the FAA address are displayed in the address field.

(5) CPU registers
A list of CPU registers is displayed in the [CPU Register] panel according to the CPU selected as the target for
debugging.

(6) Measuring execution times

- The time from the start to the end of execution by the FAA as the target for debugging is displayed in the [Event]
panel or the status bar.

- Measuring the time executed by the FAA starts when the execution is started by the CPU or the debugger.
- The simulator only supports the display of Run-Break times for the FAA.

- Points for caution on using the debugging functions

(1) If FAA debugging is not in use, the FAA is handled in a similar way to other peripheral IP modules. In this case,
FAA debugging is not available.

(2) Programs for the FAA cannot be downloaded by using a debugger. Transfer those programs in the instruction
code area by the program of the CPU.

(3) Do not proceed with debugging of the FAA during execution of a CPU program that includes operations with the
WIND register.
Since the debugger temporarily rewrites the WIND register in the debugging operations for the FAA, the use of
FAA debugging may make operation of the program being executed by the CPU incorrect.

(4) If this facility is used, the following facilities are not available.
- Set an Action into Programs
(5) The following functions are not available for the FAA.
- Software breaks
- Measurement of the execution time for a desired range of the program
- Collecting the history of execution
- Access-related events
- Go to Here
- Step over
- Return out
- Coverage function [Simulator]

(6) When the tracing and timer functions of the CPU are enabled, the target for debugging cannot be changed during
the execution of a program in the simulator.
The target for debugging cannot be changed during the execution of a program in the E2, E2 Lite or COM port.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 22 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

(7) Since the CPU and FAA are not run in synchronization by the simulator, the Run-Break times for the CPU that
include the ranges where the CPU starts execution of the FAA are not correct.

(8) Editing instruction codes in the [Disassembly] panel is not possible.

2.5 Connect to/Disconnect from the Debug Tool

This section describes how to connect to/disconnect from the debug tool.

2.5.1 Connect to the debug tool

By selecting [Connect to Debug Tool] from the [Debug] menu, CS+ starts communicating with the debug tool selected in

the active project.
After succeeding in the connection to the debug tool, the Statusbar of the Main window changes as follows:

For details on each item displayed on the Statusbar, see the section of the "Main window".

Figure 2.13 Statusbar Indicating Successful Connection to Debug Tool

| % DISCONNECT]

v

| ® | EREAK [(x00lbe | @®RL7E Simulator (7 Mot measured [Ny (53] 3 |
]

I
The information of the debug tool appears at this area.

Caution If the version of compiler being used is not supported by CS+, [Connect to Debug Tool] will be disabled.

Remark 1. When the button on the Debug toolbar is clicked, the specified file is downloaded automatically after
connecting to the debug tool (see "2.6.1 Execute downloading").
When the ﬂ button on this toolbar is clicked, the project is built automatically, and then the buiilt file is
downloaded after connecting to the debug tool.

Remark 2. [Simulator]
When a microcontroller whose Simulator supports peripheral function simulations is selected, the Simu-

lator GUI window is automatically opened after connecting to the debug tool (default).

2.5.2 Disconnect from the debug tool

By clicking the button on the Debug toolbar, CS+ cuts off the communication with the connected debug tool.
After disconnecting from the debug tool, the Statusbar of the Main window changes as follows:

Figure 2.14 Statusbar Indicating Disconnection from Debug Tool

| m | EREAK »Ox00lbe |=®RL7E Simulator (7 Not measured [¥y] (1] (23 |

v

| % DISCONNECT]

| —

This area is left blank. "DISCONNECT" is displayed.
Caution The debug tool cannot be disconnected from CS+ while the program is running.
Remark Disconnecting the debug tool will close all the panels and dialog boxes that can be displayed only during

the connection.

2.5.3 Connect to the debug tool using hot plug-in [E1][E20]

R20UT5301EJ0100 Rev.1.00 ENESAS Page 23 of 413
Jun 01, 2023

CS+ V8.

10.00 2. FUNCTIONS

With hot plug-in function, you can connect the debug tool to the target board during execution of a program (without
having to turn off the system) and debug the program while it is in execution.
Follow the steps below to establish hot plug-in connection.

Caution 1. The hot plug-in connection is enabled only when the selected microcontroller incorporates the hot plug-in

function.

Caution 2. When a hot plug-in connection is made, the settings of the following properties are ignored (i.e. the pro-

gram operates as if the specification for them is [No]). The settings of them become valid again after
reconnection with CS+.

- [Mask TARGET RESET signal]

- [Mask INTERNAL RESET signal]

- [Power target from the emulator (MAX 200mA)]

- [Erase flash ROM when starting]

Caution 3. When a hot plug-in connection is made, events currently being set in the project are ignored.

(1)

(a)

(b)

(2)

@)

(4)

®)

(6)

They become valid again after reconnection with CS+.

Set the number of times and interval to retry

Set the interval and number of times to retry connection when the emulator fails to communicate with the micro-
controller on the target board.

You can configure this settings in [Hot Plug-in] category on the [Connect Settings] tab of the Property panel.

Figure 2.15 [Hot Plug-in] Category

4 Hot Plug-in
Retrying mitervallms] 1000
Mumber of times af relrving 3

[Retrying interval[ms]]
Specify an interval in 1 ms unit to retry the connection.
Directly enter the decimal number between 0 and 60000 (default: [1000]).

[Number of times of retrying]
Specify the number of times to retry the connection.
Directly enter the decimal number between 0 and 3 (default: [3]).

Execute the program
Execute the program which has been downloaded onto the microcontroller on the target board without connecting
to the emulator.

Select the debug tool
In the active project, select the debug tool which supports hot plug-in connection (E1/ E20).

Connect the debug tool to CS+ using hot plug-in
Select [Hot Plug-in] from [Debug] menu to initiate the preparation for hot plug-in connection.

Connect to the target board

Following message will appear once you are ready to start hot plug-in connection. Connect the emulator to the
target system and click [OK]. This will start the communication with the debug tool which is selected in the cur-
rently active project.

Figure 2.16 Message Indicating that Hot Plug-in Connection Is Ready to Be Started

[Question(Q0204001) |

L~ Hot Plug+n is prepaned.
e Lonnect the debug tanget to a PLand cick OF.

ok || Coneet || Hel

Hot plug-in connection completed

R20UT5301EJ0100 Rev.1.00 ENESAS Page 24 of 413
Jun 01, 2023

CS+V8.10.00

2. FUNCTIONS

Once the connection to the debug tool is successfully completed, the Statusbar on the Main window will change as
shown below. For details on each item displayed on the statusbar, see the section of the "Main window".

Figure 2.17 Statusbar Indicating Successful Hot plug-in Connection to Debug Tool

| | i | RLIPS
A

v

JRunning @3 RL7E E1(Serial) () Measuring Ny 2 |

=% DISCONNECT]

“RUN* indicates that the program is running.

This area shows information on the currently active debug tool.

R20UT5301EJ0100 Rev.1.00 ENESAS

Jun 01, 2023

Page 25 of 413

CS+V8.10.00 2. FUNCTIONS

2.6 Download/Upload Programs

This section describes how to download programs (such as load module files) to debug to CS+ and how to upload the
memory contents being debugged from CS+ to files.

2.6.1 Execute downloading

Download the load module file to be debugged to the debug tool that is currently connected.
Follow the steps below on the [Download File Settings] tab in the Property panel for the downloading, and then execute
the downloading.

Caution By default, CPU reset automatically occurs after downloading the file, and then the program is executed
to the specified symbol position. If this operation above is not needed, specify [No] with both of the [CPU
Reset after download] and [Execute to the specified symbol after CPU Reset] property.

(1) [Download] category setting

Figure 2.18 [Download] Category

4 Downdoad
4 Dawnload files [
a [0] DatsuHBurldvbast shs
File DeiautBuilditest ahs
File type Load module file
Devenlozd phject feg
Dornloed symbol infarmatian Yes
Generate the infarmation for input completion Yes
CPU Fezet after download ‘fag
Davnlead Mode Spesd proariy
Eraze tlazh HOM before download L]
fuiomatic change mathod of event satting pozition Suspend avant
Check rezarved area overeriting ag
Caution Properties displayed in this category differ depending on the debug tool used in the project.

(@) [Download files]
The names of files to be downloaded and download conditions are displayed (the number enclosed with "[]"
indicates the number of files to be download).
Files that are specified as build target files in the main project or subprojects will automatically be selected as
the files to be downloadedN°t®,
However, you can manually change the download files and the condition. In this case, see "2.6.2 Advanced

downloading".

Note To download the load module files created by an external build tool (e.g., compilers and assem-
blers other than the build tools supplied with CS+), a debug-dedicated project needs to be cre-
ated.

If you use a debug-dedicated project as the subject to debug, add your a download file to Down-
load files node on project tree. The file to be downloaded will be reflected in this property.

See "CS+ Integrated Development Environment User's Manual: Project Operation" for details on
the using an external build tool and a debug-dedicated project.

(b) [CPU Reset after download]
Specify whether to reset the CPU after downloading.
Select [Yes] to reset the CPU (default).
Note, however, that this property does not appear if the selected microcontroller always resets the CPU after
downloading.

(c) [Download Mode] (except [Simulator])
Specify the download mode for downloading to the flash ROM.
Select one of the options from the following drop-down list.

Speed priority Fills free space between the first data and the final data with FFH (the previous value in
free space before the first data and after the final data is retained).
Download speed will be faster because the writing data is reduced (default).

R20UT5301EJ0100 Rev.1.00 ENESAS Page 26 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

(d)

(e)

()

(2)

(@)

(b)

Data priority Retains the previous value in free space.
Download speed will be very slow because data in free space are read once.

[Erase flash ROM before download] (except [Simulator])

This property is valid only when the [Download Mode] (except [Simulator]) property is set to [Speed priority]
(default).

Specify whether to erase the flash ROM before downloading.

Select [Yes] to erase the flash ROM (default: [No]).

Note that the erase operation differs depending on the emulator when [Yes] is selected.

- [IECUBE]
The internal ROM area will be always erased. For the other area, an erase will be performed in the area
where the downloaded data exists.

- [E1][E20][EZ Emulator][COM Port]
For all flash area, an erase will be performed in the area where the downloaded data exists.

Caution Flash ROM is erased by writing FFH so the flash ROM will not be blank.

[Automatic change method of event setting position]

If the file is downloaded again during debugging then the location (address) set for the currently configured
event may change to midway in the instruction.

Specify with this property how to handle the target event in this circumstance.

Select one of the options from the following drop-down list.

Move to the head of instruction | Resets the subject event at the beginning address of the instruction.

Suspend event Leaves the subject event pending (default).

Note, however, that this property setting only applies to the location setting of events without debugging infor-
mation. The location setting of events with debug information is always moved to the beginning of the source
text line.

[Check reserved area overwriting when downloading] [E1][E20][EZ Emulator][COM Port]

Specify whether to output a message when overwriting to an area reserved for use by the emulator is attempted
at the time of downloading.

Select [Yes] to output a message (default).

[Debug Information] category setting

Figure 2.19 [Debug information] Category

4 Debug Information
Execule fo the specified symbal after GPL Fased i
Specified symbol _Hain
The upper limit size of the memary uszee [Mbvtes] 500

[Execute to the specified symbol after CPU Reset]

Specify from the drop-down list whether to execute the program to the specified symbol position after CPU reset
or downloading (for only when the [CPU Reset after download] property is set to [Yes]).

Select [Yes] to execute the program to the specified symbol position after CPU reset (default).

Remark When the [CPU Reset after download] property is set to [Yes], the operation after downloading is
as follows:
If [Yes] is selected for this property, the Editor panel will open automatically with displaying
source text of the position specified with the [Specified symbol] property after downloading.
If [No] is selected for this property, the Editor panel will open with displaying source text of the
reset address (when if the source text has not been allocated to the reset address, the contents
of the reset address is displayed in the Disassemble panel).

[Specified symbol]

This property appears only when the [Execute to the specified symbol after CPU Reset] property is set to [Yes].
Specify the position at which the program is stop after CPU reset.

Directly enter an address expression between 0 and "last address in address space" (default: [_main]).

Note, however, that the program will not be executed if the specified address expression cannot be converted
into an address.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 27 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Remark Normally, specify the following.
For assembler source: Start label corresponding to main function
For C source: Symbol assigned to the start of the main function name

(c) [The upper limit size of the memory usage [Mbytes]]
Specify the upper limit on the amount of memory to be used in reading the debug information.
When the amount of memory being used exceeds the upper limit specified here, memory is made available by
discarding debug information that has been read until the amount of memory in use is reduced to half of this
upper limit (lowering the upper limit might improve the situation when shortages of memory are arising).
Directly enter a decimal number between 100 and 1000 (unit: Mbyte) (default: [500]).

Caution In some cases, lowering the upper limit may lead to poorer responsiveness since it leads to more
frequent discarding and re-reading of debug information.

(3) Execute download
Click the button on the Debug toolbar.
If this operation is performed while disconnecting from the debug tool, the application automatically connects to
the debug tool, and then performs the download.

Remark When a program that has been modified during debugging is re-downloaded, you can easily build
and download it by selecting [Build & Download] from the [Debug] menu on the Main window.

(4) Canceling a download
To cancel a download, click the [Cancel] button on the Progress Status dialog box, which displays the progress of
downloading, or press the [Esc] key.

If the load module file is successfully downloaded, the Editor panel opens automatically, and the contents of the down-
loaded file's source text are displayed.

Remark You can automatically overwrite the value of SFR/CPU register with the specified values before and after
performing the download (see "2.17 Use Hook Function" for details).

2.6.2 Advanced downloading

You can change the download files and the condition to download.
With CS+, the following file types can be downloaded.

Table 2.2 Downloadable File Formats

Downloadable File Extension File Format
Load module file .abs Load module format
Intel Hex file .hex Intel Hex file format
Motorola S-record file .mot Motorola S-record file format

- (S0, S1, S9 - 16 bit-address)
- (S0, S2, S8 - 24 bit-address)
- (S0, S3, S7 - 32 bit-address)

Binary file .bin Binary format

You can change the download files or download conditions in the following Download Files dialog box.

The Download Files dialog box is opened by clicking the [...] button that appears at the right edge in the column of the
[Download files] property when you select it in the [Download] category on the [Download File Settings] tab of the Property
panel.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 28 of 413
Jun 01, 2023

CS+V8.10.00

2. FUNCTIONS

Figure 2.20 Opening Download Files Dialog Box

T —

CPU Feset affter dowsload
Dawrload Mode
Eraze flagh ROM before download

futomatic change mathod of event saiting poEition

Check rezerved area oversriling

Figure 2.21

ez
Speed priority
o
Suspand event
Wes

Advanced Downloading (Download Files Dialog Box)

Download Files

(Darnlaad file list:

\l &dd . o 11 8 /\

J

]\

Dowvnload tile property:

4 Download file information
File Delault Buildhiest abs
File twpe Load module file
Dovnbiad chject Yes
Dovanboad evmbal Yes
Genersle the infar Yes

[Download file list] area

=

)

File
Specily the fily

[Download file property] area

| ok || Cancel || kel

This section describes how to configure on the Download Files dialog box above when the following cases.

For details on the contents and function in each area, see the section for the Download Files dialog box.

2.6.2.1 Change download conditions for load module files
2.6.2.2 Add download files (*.hex/*.mot/*.bin)
2.6.2.3 Perform source level debugging with files other than the load module file format

2.6.2.1 Change download conditions for load module files

Follow the steps below in the Download Files dialog box to change the download conditions (object information and

symbol information) for load module files.

(1) Select a load module file

Select a load module file to download in the [Download file list] area.

(2) Change download conditions

Current download conditions for the selected load module file are displayed in the [Download file property] area.
Change each items displayed in the property.

Download object

Specify whether to download the object information from the specified file.

Default Yes
Modifying Select from the drop-down list.
Available Yes Downloads object information.
values
No Does not download object information.
R20UT5301EJ0100 Rev.1.00 -zENESAS Page 29 of 413

Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Download symbol | Specify whether to download the symbol information from the specified fileNote 1.
information

Default Yes

Modifying Select from the drop-down list.

Available Yes Downloads symbol information.
values

No Does not download symbol information.

Generate the infor- | Select whether to generate the information for the Symbol name completion function
mation for when downloadingN° 2,
input completion

Default Yes

Modifying Select from the drop-down list.

Available Yes Generates the information for the symbol name completion
values function. (i.e. uses the symbol name completion function.)
No Does not generate the information for the symbol name com-

pletion function. (i.e. does not use the symbol name comple-
tion function.)

Note 1. If the symbol information have not been downloaded, the source level debugging cannot be per-
formed.
Note 2. When [Yes] is selected, the time taken for downloading and the memory usage on the host machine

will increase. We recommend selecting [No] in this item if you do not intend to use the symbol
name completion function.

(3) Click the [OK] button
Enable all the configuration in this dialog box and change the download conditions.

2.6.2.2 Add download files (*.hex/*.mot/*.bin)

Follow the steps below to add download files other than the load module format (Intel HEX file (*.hex), Motorola S-
record file (*.mot) or binary file (*.bin)) in the Download Files dialog box.

(1) Click the [Add] button
When the [Add] button is clicked, a blank list item "-" is displayed in the last line of the [Download file list] area.

(2) Property configuration of the download files to add
Configure the download conditions for the download file to add in the [Download file property] area.
Configure each item displayed with the following condition.
When the configuration is completed, the file name specified in this property is displayed in the blank list of the
[Download file list] area.

File Specify the download file (Intel HEX file (*.hex), Motorola S-record file (*.mot) or binary file
(*.bin)) to download (up to 259 characters).

Default Blank

Modifying Directly enter from the keyboard, or specify with the Select Download File
dialog box that is opened by clicking the [...] button.

Available See "Table 2.2 Downloadable File Formats".
values
R20UT5301EJ0100 Rev.1.00 RENESAS Page 30 of 413

Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

File type Specify the type of the file to download.
Select [Hex file] or [Binary data file].

Default Load module file

Modifying Select from the drop-down list.

Available Either one of the following
values - Load module file

- Hex file

- S record file

- Binary data file

Offset Specify the offset from the address at which the file's download is to start.
Note that this item appears only when [File type] or [S record file] is set to [Hex file].

Default 0

Modifying Directly enter from the keyboard.

Available 0x0 to OxFFFFF in hexadecimal number
values
Start address Specify the address at which to start the file's download.

Note that this item appears only when [File type] is set to [Binary data file].

Default 0

Modifying Directly enter from the keyboard.

Available 0x0 to OxFFFFF in hexadecimal number
values
Remark The settings of whether to download the object information or symbol information can be made only

when the type of the file to download is load module files.

(3) Check the order of download
The order of the download is the display order of the files displayed in the [Download file list] area.
If you want to change the order, use the [Up]/[Down] button.

(4) Click the [OK] button
Enable all the configuration in this dialog box and add a download file (the file name is displayed in the [Download]
category on the [Download File Settings] tab of the Property panel).

2.6.2.3 Perform source level debugging with files other than the load module file format

Even when an Intel HEX file (*.hex), Motorola S-record file (*.mot) or binary file (*.bin) is specified to be the subject file
to download, it is possible to do source level debugging by downloading symbol information for the load module file from
which the subject file was created, along with the subject file that you download.

To do so, follow the steps below on the Download Files dialog box.

(1) Click the [Add] button
When the [Add] button is clicked, a blank list item "-" is displayed in the last line of the [Download file list] area.

(2) Property configuration of the load module file to add
Configure each item displayed with the following condition in the [Download file property] area.

File Specify a load module file from which the Intel HEX file (*.hex), Motorola S-record file
(*.mot) or binary file (*.bin) that you want to download was created.

Directly enter from the keyboard, or specify with the Select Download File dialog box that
is opened by clicking the [...] button that appears at right by selecting this property.

File type Select [Load module file] (default).

Download object Specify [No].

R20UT5301EJ0100 Rev.1.00 ENESAS Page 31 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Download symbol | Select [Yes] (default).
information

Generate the infor- | Select whether to generate the information for the Symbol name completion function
mation for when downloading™N°t€.
input completion

Default Yes

Modifying Select from the drop-down list.

Available Yes Generates the information for the symbol name completion
values function. (i.e. uses the symbol name completion function.)
No Does not generate the information for the symbol name com-

pletion function. (i.e. does not use the symbol name comple-
tion function.)

Note When [Yes] is selected, the time taken for downloading and the memory usage on the host machine
will increase. We recommend selecting [N0] in this item if you do not intend to use the symbol
name completion function.

(3) Click the [OK] button
Enable all the configuration in this dialog box and add the specified load module file (Only the symbol information
included in the load module file will be downloaded).

2.6.3 Execute uploading

The contents of the memory of the debug tool currently connected can be saved (uploaded) in an arbitrary file.
You can upload the data in the Data Save dialog box that is opened by selecting the [Debug] menu >> [Upload...].
In this dialog box, follow the steps below.

Figure 2.22 Execute Uploading (Data Save Dialog Box)

Data Save - Upload
File Marma: | [Iout file name here) [] [:
File Tvpa: | Futel Hes format (hes) -

Save Fange Address Swmbal:

Unpul the starl of saving range IJ‘:I'EI = | thput the end of saving range _Hl'r

Cance|] Helo

(1) Specify [File Name]
Specify the name of the file to save.
You can either type a filename directly into the text box (up to 259 characters), or select one from the input history
via the drop-down list (up to 10 items). You can also specify the file by clicking the [...] button, and selecting a file
via the Select Download File dialog box.

(2) Specify [File Type]
Select the format in which to save the file from the following drop-down list.
The following file formats can be selected.

Table 2.3 Type of Files That Can be Uploaded

Displayed List ltems File Format
Intel Hex format (*.hex) Intel Hex format
Motorola Hex format (*.hex) Motorola S type format
R20UT5301EJ0100 Rev.1.00 RENESAS Page 32 of 413

Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Displayed List Iltems File Format

Binary data (*.bin) Binary format

(3) Specify [Save Range Address/Symbol]
Specify the range of addresses to save via "start address" and "end addresses".
Directly enter hexadecimal number/address expression in each text box or select from the input history displayed
in the drop-down list (up to 10 items).

Remark A symbol name at the current caret position can be complemented by pressing the [Ctrl] + [Space]
key in each text box (see "2.20.2 Symbol name completion function").

(4) Click the [Save] button
Save the contents of the memory in the specified file in specified format as upload data.

R20UT5301EJ0100 Rev.1.00 RENESAS Page 33 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2.7 Display/Change Programs

This section describes how to display and change programs when a load module file with the debug information is
downloaded to a debug tool.
Downloaded programs can be displayed in the following panels.

- Editor panel
The source file is displayed and can be edited.
Furthermore, the source level debugging/instruction level debugging (see "2.8.3 Execute programs in steps") and the
display of the code coverage measurement result (see "2.14.2 Display the coverage measurement result") can be
performed in this panel.

- Disassemble panel
The result of disassembling the downloaded program (the memory contents) is displayed and can be edited (line
assemble).
Furthermore, the instruction level debugging (see "2.8.3 Execute programs in steps") and the display of the code cov-
erage measurement result (see "2.14.2 Display the coverage measurement result") can be performed in this panel.
In this panel, the disassemble results can be displayed with the corresponding source text (default).

Remark It is normally necessary to download a load module file with debugging information in order to perform
the source level debugging, but it is also possible to do so by downloading an Intel HEX file (*.hex),
Motorola S-record file (*.mot) or binary file (*.bin) (see "2.6.2.3 Perform source level debugging with files
other than the load module file format").

2.7.1 Display source files

The source file is displayed in the Editor panel below. The Editor panel automatically opens with displaying source text
of the specified position (see "2.6.1 Execute downloading") when a load module file is successfully downloaded.

If you want to open the Editor panel manually, double-click on the source file in the Project Tree panel.

For details on the contents and function in each area, see the section for the Editor panel.

Figure 2.23 Display Source File (Editor Panel)

jm—:un:

1) &= ™~ | Columns-

Lir.] | |332] Address | (2] iF o

L] sioid rain(aid)

ih [

T £& Bart user code. Do nol edit cormment generaled hare 47

77 001be FLTALID_Charnel) Stari()

78 00122 RLTALID Chareell Start)

I wibie (110

o0 Ay

| 00 1ch 1 fune !l

B2 00 1es {ur20)

B3 10 1ce }

B A% End user code. [rod edd commend e=r=rst=d here %7

38 001d0 | [}

i _

87 S® Srart user code for adding. =

(] woid func 10 "
d | i F

2.7.2 Display the result of disassembling

The result of disassembling the downloaded program (disassembled text) is displayed in the Disassemble panel below.

Select [View] menu >> [Disassemble] >> [Disassemble? - 4].

The maximum of 4 Disassemble panels can be opened. Each panel is identified by the names "Disassemble1”,
"Disassemble2", "Disassemble3" and "Disassemble4" on the titlebar.

For details on the contents and function in each area, see the section for the Disassemble panel.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 34 of 413
Jun 01, 2023

CS+V8.10.00

2. FUNCTIONS

Figure 2.24 Display Result of Disassembling (Disassemble Panel)

Dizassembie]]
280|208 B view- =L Toober]
.L: woid waindvoid) .
?:l:
"‘E: S Sart uzer code. Do ol edit comeent gencrabed here 2f L
H R_Taun_Chonre | 0_3tart ()
wain:
g N00be foefR0200 I B TA _Channell_Start
s jwunr.alﬁtartu
nofc? =L | _R_TAUN_Channel | _Start
33 while (103
2l funci{):
%5 000ck Fodininn CALL H _funcl
22 func?)2
LA fef 10000 CALL | funct
' '|]'_|'.:.: ef f 6 ER & _nea i 8 e
- 11} 3
_'_n | T | T
M @ (3)

): Event area
): Address area
): Disassemble area

(1
@
(3

Remark

You can set the scroll range of the vertical scroll bar on this panel via the Scroll Range Settings dialog

box that is opened by clicking the button from [View] on the toolbar.

This section describes the following.

2.7.2.1 Change display mode
2.7.2.2 Change display format

2.7.2.3 Move to the specified address
2.7.2.4 Move to the symbol defined location
2.7.2.5 Save the disassembled text contents

2.7.2.1 Change display mode

You can change the display mode of the Disassemble panel by clicking the button (toggle) on the toolbar.

(1) Mixed display mode

In this display mode (default), the disassembled text is displayed combined with the source text.

Figure 2.25 Mixed Display Mode (Disassemble Panel)

_funcT]

101 di [Tl PIIEH =L Source text
::I] [uintl&_t I3
g for {1 = 03 0 < 203 §++0f

101 dz (I CLAY FiYy

101 d 16 A HL , &

101 o4 17 MOV HE, AL

101 o5 A41400 CHR A%, j14

07 d2 dell? B F_funcl#lx10
Ha: furcTal 13 -

LT 07 d= fe=30700 CELL !!_flJ Disassembled text

HE L b

101 de al TMCY H|

101 df effl BR b func] #0=3

(2)

Disassemble display mode

In this display mode, the source text is hidden and only the disassembled text is displayed.

R20UT5301EJ0100 Rev.1.00
Jun 01, 2023

RENESAS

Page 35 of 413

CS+V8.10.00 2. FUNCTIONS

Figure 2.26 Disassemble Display Mode (Disassemble Panel)

_funel:

107 dl ol PLEH HL

107 el 1§ GLR® AN

101 d [HIWE HL . B

101 d4 I HOYE AL HL

101 441400 CVPN A, 1AM

101 de 7 BNG 3_funci+0x10
¥ 001 ds fcedd 100 CALL 'T funcla

101 da a7 INGK HL

101 df aff3 BR $_funcl+0x3

1] &l ch POP HC

101 e fmnfnﬁ RET Disassembled text

001 &3 |~ 7 PLEH HL

01 e & CLR A%

2.7.2.2 Change display format

The display format of the disassemble area can be changed using buttons below on the toolbar.

View The following buttons to change the display format are displayed.

Show Offset Displays the offset value of the label. The offset value from the nearest label is dis-
played when a label is defined for the address.

Show Symbol Displays the address value as the result of disassembling in the format "symbol + off-
set value" (default).

Note that when a symbol has been defined as the address value, only the symbol is
displayed.

Show Function Name | Displays the name of the register by its function name (default).

Show Absolute Name | Displays the name of the register by its absolute name.

2.7.2.3 Move to the specified address

You can move to the specified address in the disassembled text in the Go to the Location dialog box which opens when
selecting [Go to...] from the context menu.
In this dialog box, follow the steps below.

Figure 2.27 Move to Specified Address in Disassembled Text (Go to the Location Dialog Box)
Go to the Location IE
Address/Symbok | | [=]

ok][ol | [8

(1) Specify [Address/Symbol]
Specify the address you want to move the caret to.
You can either type an address expression directly into the text box (up to 1024 characters), or select them from
the input history via the drop-down list (up to 10 items).

Remark A symbol name at the current caret position can be complemented by pressing the [Ctrl] + [Space]
key in this text box (see "2.20.2 Symbol name completion function").

(2) Click the [OK] button
Caret is moved to the specified address.

2.7.2.4 Move to the symbol defined location

You can move the caret to the address where the symbol is defined.
Click the button on the toolbar after moving the caret to the instruction which refers to the symbol.

R20UT5301EJ0100 Rev.1.00 RENESAS Page 36 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Furthermore, click the button on the toolbar following the previous operation returns the caret to the instruction
which refers to the symbol at previous caret is defined.

2.7.2.5 Save the disassembled text contents

Contents of the disassembled text can be saved in text files (*.txt)/CSV files (*.csv).

When saving to the file, the latest information is acquired from the debug tool, and it is saved in accordance with the dis-
play format on this panel.

The Data Save dialog box can be opened by selecting the [File] menu >> [Save Disassemble Data As...] (when this
operation takes place with the range selected on the panel, the disassembled data can be saved only for the selected
range).

In this dialog box, follow the steps below.

Figure 2.28 Save Disassembled Text Contents (Data Save Dialog Box)

[Data Save - Disassemble Data ‘
[

File Mame: | GhEample_projecisiDizassenble] -

File Typer | Teut files{* tat)
Save Raree Address Swmbal:

_imairrt [l E| - _man+lxe

(1) Specify [File Name]
Specify the name of the file to save.
You can either type a filename directly into the text box (up to 259 characters), or select one from the input history
via the drop-down list (up to 10 items).
You can also specify the file by clicking the [...] button, and selecting a file via the Select Data Save File dialog box.

(2) Specify [File Type]
Select the format in which to save the file from the following drop-down list.
The following file formats can be selected.

List Item Format
Text files (*.txt) Text format (default)
CSV (Comma-Separated Variables)(*.csv) CSV formatNote
Note The data is saved with entries separated by commas (,).
If the data contains commas, each entry is surrounded by double quotes " in order to avoid illegal
formatting.

(3) Specify [Save Range Address/Symbol]
Specify the range of addresses to save via "start address" and "end addresses".
Directly enter hexadecimal number/address expression in each text box or select from the input history displayed
in the drop-down list (up to 10 items).
If a range is selected in the panel, that range is specified as the default. If there is no selection, then the range
currently visible in the panel is specified.

Remark A symbol name at the current caret position can be complemented by pressing the [Ctrl] + [Space]
key in each text box (see "2.20.2 Symbol name completion function").

(4) Click the [Save] button
Disassembling data is saved in the specified file with the specified format.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 37 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Figure 2.29 Output Example of Disassembling Data

Label (symbol name) 4—‘ Label (symbol) line I

File name Line number C language source text 4_l Source text line I

Address Offset Code Result of Disassembling 4—| Disassembling line I
Remark 1. When the contents of the panel are overwritten and saved by selecting the [File] menu >> [Save

Disassemble Data], the Disassemble panels (Disassemble1-4) are handled individually for these
respectively. In addition, saving range is same as the previously specified address range.

Remark 2. You can print the current screen image of this panel by selecting the [File] menu >> [Print...].

2.7.3 Run a build in parallel with other operations

CS+ can automatically start a build when one of the following events occurs (rapid build function).
- For other than the debug-only project

- When any one of the following files that are added to the project is updated:
(C source file, C++ source file, assembler source file, header file, link directive file, symbol information file,
object module file, and library file)

- When a build target file has been added to or removed from the project
- When the link order of object module files and library files is changed

- When the property of the build tool or the build target file is changed

- For the debug-only project

- When you have edited and saved the C source file, C++ source file, assembler source file and header file that
are added to the debug-dedicated project

- When a C source file, C++ source file, assembler source file, or header file has been added to or removed from
the debug-dedicated project

- When the property of the debug-dedicated project is changed
If a rapid build is enabled, it is possible to perform a build in parallel with the above operations.
To enable/disable a rapid build, select [Rapid Build] from the [Build] menu. A rapid build is enabled by default.

Caution When an external text editor is used, check the [Observe registered files changing] check box on the
[General - Build] category in the Option dialog box to enable this function.

Remark 1. After editing source files, it is recommend to save frequently by pressing the [Ctrl] + [S] key.
Remark 2. Enable/Disable setting of the rapid build applies to the entire project (main project and subprojects).

Remark 3. If you disable a rapid build while it is running, it will be stopped at that time.

2.7.4 Perform line assembly

Instructions and code displayed in the Disassemble panel can be edited (line assembly).
This section describes the following.

2.7.4.1 Edit instructions
2.7.4.2 Edit code

2.7.4.1 Editinstructions

Follow the steps below to edit instructions.

R20UT5301EJ0100 Rev.1.00 RENESAS Page 38 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

(1) Switch to edit mode
Double-click the instruction to edit or select [Edit Disassemble] from the context menu after moving the caret to the
instruction to edit.

(2) Edit instructions
Use keyboard to directly edit the instructions.

(3) Write to memory
Press the [Enter] key to line assemble the edited instructions after editing. The code is automatically written to the
memory.
If the edited instruction is invalid, the instruction is shown in red and will not be written to the memory.

If there is a space because of overwriting the displayed result of disassembling by another instruction, its byte number is
automatically compensated with NOP instruction as follows:

Example 1. MOVW instruction (4-byte instruction) in the second line is overwritten by DEC instruction (1-byte instruc-

tion).

Before editing 0461CF ADDW AX, #0CF61H
CBF820FE MOVW SP, #0FE20H
FC8E1800 CALL !'l funcA
53C0 MOV B, #0COH

After editing 0461CF ADDW AX, #0CF61H
93 DEC B
00 NOP
00 NOP
00 NOP
FC8E1800 CALL !'l funcA
53C0 MOV B, #0COH

Example 2. ADDW instruction (3-byte instruction) in the first line is overwritten by MOVW instruction (4-byte instruc-

tion).
Before editing 0461CF ADDW AX, #0CF61H
CBF820FE MOVW SP, #0FE20H
FC8E1800 CALL !'l funcA
53C0 MOV B, #0COH
After editing CBF820FE MOVW SP, #0FE20H
00 NOP
00 NOP
00 NOP
FC8E1800 CALL !'!l funcA
53C0 MOV B, #0COH

2.7.4.2 Edit code

Follow the steps below to edit code.

(1) Switch to edit mode
Double-click the code to edit or select [Edit Code] from the context menu after moving the caret to the code to edit.

(2) Editcode
Use keyboard to directly edit the code.

(3) Write to memory
Press the [Enter] key to write the code to the memory after editing.
If the edited instruction is invalid, the instruction is shown in red and will not be written to the memory.
When the code is written to the memory, the result of disassembling is also updated.

R20UT5301EJ0100 Rev.1.00 RENESAS Page 39 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2.8 Execute Programs

This section describes how to execute programs.
Main operations in this section are taken place from the debug toolbar or the [Debug] menu in the Main window, where
commands to control the execution of programs are included.

Caution Items of the debug toolbar and the [Debug] menu are valid only while connected to the debug tool.

Figure 2.30 Debug Toolbar

'-'

Debus x|
NG WORCTCR W T

Figure 2.31 [Debug] Menu

Debug
& UG':l\'r'l':lﬂd
%y Build & Download F6
5y Rebuild & Download
@ Connect to Debug Too
B2a Hot P L= 1r
=f Upload...
g Disconnect from Debug Tool Shift+F6
Using Debug Tool b .
Bl Stop Shift+F5
B Go F5
i Ignore Break and Go F8
E SteplIn Fii
= Step Over F10
&= Return Out Shift+F11
k5| CPU Reset Ctrl+F5
¥y Restart

2.8.1 Reset microcontroller (CPU)

To reset CPU, click the button on the debug toolbar.
When CPU is reset, the current PC value is set to the reset address.

Remark You can automatically overwrite the value of SFR/CPU register with the specified values after CPU reset
under breaking (see "2.17 Use Hook Function" for details).

2.8.2 Execute programs

The following types of CS+ execution functions are provided.
Select any of the following operations according to the purpose of debugging.
See "2.9 Stop Programs (Break)" for details on how to stop the program in execution.

2.8.2.1 Execute after resetting microcontroller (CPU)
2.8.2.2 Execute from the current address

R20UT5301EJ0100 Rev.1.00 ENESAS Page 40 of 413
Jun 01, 2023

CS+V8.10.00

2. FUNCTIONS

2.8.2.3 Execute after changing PC value
Remark You can automatically overwrite the value of SFR/CPU register with the specified values before starting

program execution (see "2.17 Use Hook Function" for details).

2.8.2.1 Execute after resetting microcontroller (CPU)

Click the button on the debug toolbar.
Reset CPU and start execution of the program from the reset address.
When this operation is performed, the program continues to be executed until either of the following occurs:

- The button has been clicked (see "2.9.2 Stop the program manually").
- The PC has reached a breakpoint (see "2.9.3 Stop the program at the arbitrary position (breakpoint)").

- A break event condition has been met (see "2.9.4 Stop the program at the arbitrary position (break event)" or "2.9.5
Stop the program with the access to variables/SFRs").

- A fail-safe break has occurred (see "2.9.6 Stop the program when an invalid execution is detected [[IECUBE]").

- Other break causes have occurred.
Remark This operation is the same as when the button is clicked after clicking the button.

2.8.2.2 Execute from the current address

Perform any of the following operations to start executing the program from the address at the current PC value.

(1)

(2)

@)

Normal execution

Click the button on the debug toolbar.
When this operation is performed, the program continues to be executed until either of the following occurs:

- The button has been clicked (see "2.9.2 Stop the program manually").
- The PC has reached a breakpoint (see "2.9.3 Stop the program at the arbitrary position (breakpoint)").

- A break event condition has been met (see "2.9.4 Stop the program at the arbitrary position (break event)" or
"2.9.5 Stop the program with the access to variables/SFRs").

- A fail-safe break has occurred (see "2.9.6 Stop the program when an invalid execution is detected [[IECUBE]").

- Other break causes have occurred.

Execution ignoring break-related events

Click the button on the debug toolbar.
When this operation is performed, the program continues to be executed until either of the following occurs:

- The button has been clicked (see "2.9.2 Stop the program manually").
- A fail-safe break has occurred (see "2.9.6 Stop the program when an invalid execution is detected [I[ECUBE]").

- Other break causes have occurred.
Remark If you have started the execution with this operation, the occurrence of Action event will also be
ignored.

Execution to the caret position
To start this operation, move the caret to the line/instruction to stop the program in the Editor panel/Disassemble

panel, then select [Go to Here] from the context menu.
When this operation is performed, the program continues to be executed until either of the following occurs:

- The PC has reached the address of the caret position.

- The button has been clicked (see "2.9.2 Stop the program manually").
- A fail-safe break has occurred (see "2.9.6 Stop the program when an invalid execution is detected [[IECUBE]").

- Other break causes have occurred.

Caution When the corresponding address of the line at the caret position does not exist, the program is exe-
cuted to the corresponding address of the lower valid line (if the corresponding address does not

exist, an error message will appear).

R20UT5301EJ0100 Rev.1.00 ENESAS Page 41 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Remark If you have started the execution with this operation, the occurrence of Action event will also be
ignored.

2.8.2.3 Execute after changing PC value

The program is executed after forcibly changing the current PC value to an arbitrary address.

To start this operation, move the caret to the line/instruction to start the program in the Editor panel/Disassemble panel,
then select [Set PC to Here] from the context menu (the current PC value is set to the address of the line/instruction where
the caret currently exists).

Then execute either one of the execution method described in "2.8.2.2 Execute from the current address".

2.8.3 Execute programs in steps

When either of the following operation has occurred, the program will stop automatically after conducting step execution
in the source level (1 line of source text) or in the instruction level (1 instruction).

Once the program is stopped, the contents of each panel will be updated automatically. As such, step execution is
suited for debugging the program execution in transition either in source or instruction level.

The unit in which the program is step-executed depends on the setting of the Editor panel as follows:

- When the button on the toolbar is invalid (default):
Step execution is conducted in source level.
Note, however, that when the focus is in the Disassemble panel or the line information does not exist in the address

specified by the current PC value, the step execution is conducted in instruction level.

- When the button on the toolbar is valid:
Step execution is conducted in instruction level.

Remark The button is only enabled if the mixed display mode is selected on the Editor panel (see "CS+ Inte-
grated Development Environment User's Manual: Editor").

Step execution is divided into the following types:

2.8.3.1 Step in function (Step in execution)
2.8.3.2 Step over function (Step over execution)
2.8.3.3 Execute until return is completed (Return out execution)

Caution 1. Breakpoints, break events, and action events that have been set do not occur during step execution.

Caution 2. [f an instruction to move to standby mode (HALT/STOP) is executed during step execution, the program
will break at the next instruction after the standby mode instruction.
This behavior differs depending on the debug tool used.

- For other than [Simulator]
It will not go into standby mode during step execution.

- [Simulator]
It will go into standby mode during step execution.
It will appear that standby mode has been released. Check the CPU status on the Main window's sta-

tusbar to see if standby mode has been released.

Caution 3. For other than [Simulator]
Interrupts are not acknowledged and fail-safe breaks [IECUBE] do not occur during step execution.

Caution 4. [Simulator]
You may jump to an interrupt handler during step execution.

Caution 5. During source-level stepping, the debugger may appear to be executing instructions that are not sup-
posed to be executed.
However, the reason for these problems is a difference between the debugging information generated by
the compiler and the actual code. The result of executing the code generated by the compiler is correct.

Example In the program code shown below, it seems that the position indicated by the current PC
might be moved to position (*1) after the execution of (*2), although (*1) is never actually
executed in the generated code.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 42 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

void main (void) ;
int x, vy, zl, z2, z3;
void func (int 1)
{
if (1 == 0) {
++x; // <-(*1)
t+zl;++z2;++23;
} else {
++y; [/ <=(*2)
++z1;++z2;++23;
}
}
int one = 1;
void main (void)
{
while (1)
{
func (one) ;
}
}

Note that this caution may be eliminated by making either or both of the following settings on the [Com-
pile Options] tab in the Property panel of the build tool.

- Set the [Enhance debug information with optimization] property to [Yes(-g_line)] in the [Debug Informa-
tion] category.

- Set the [Level of optimization] property to [Debug precedence(-Onothing)] in the [Optimization] cate-
gory.

2.8.3.1 Step in function (Step in execution)

When the function is called, the program is stopped at the top of the called function.
Click the button on the debug toolbar to perform Step in execution.

Caution 1. Step in execution for a function without the debug information is not possible.

Caution 2. If Step in execution is performed for the longjmp function, program execution may not complete and may
wait for a time-out.

Caution 3. The beginning of the function (prologue processing) is not skipped. To skip prologue processing, perform
Step in execution again.

2.8.3.2 Step over function (Step over execution)

In the case of a function call by the CALL instruction, all the source lines/instructions in the function are treated as one
step and executed until the position where execution returns from the function (step execution will continue until the same
nest is formed as when the CALL instruction has been executed).

Click the button on the debug toolbar to perform Step over execution.

In the case of an instruction other than CALL, operation is the same as Step in execution.

Caution If Step over execution is performed for the longjmp function, program execution may not complete and
may wait for a time-out.

2.8.3.3 Execute until return is completed (Return out execution)

Step-execute the program so that the program will stop when it returns from the current function to the caller function.
When the execution of source line/instruction that require checking has been completed, you can perform step execution
using this instruction so that you can make the program return to the caller function without step executing the remaining
instructions inside the function.

Click the button on the debug toolbar to perform Return out execution.

Caution 1. If Return out execution is performed in the main function, the program is stopped in the startup routine.
R20UT5301EJ0100 Rev.1.00 ENESAS Page 43 of 413

Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Caution 2. If Return out execution is performed in a function that called the longjmp function, breaks may not occur.

Caution 3. Return out execution cannot be performed immediately after a function return.

2.9 Stop Programs (Break)

This section describes how to stop the program in execution.
CS+ can stop the program in execution at the arbitrary position by using the following functions.

(1) Forced break function
Stops the program forcibly.

(2) Hardware break function
The debug tool consecutively checks the break condition while the program is in execution and stops the program
when the condition is met. This function is implemented using the debug tool resources.
There are two types of Hardware Break event: "execution type" which stops the program at the arbitrary position;
and "access type" which stops the program when an arbitrary variable and so on is accessed with the specified

type.

Remark 1. [IECUBE]
There are two types of Hardware Break event (execution type): "before execution break" which
breaks before the instruction at the specified address is executed; and "after execution break"
which breaks after the instruction at the specified address is executed. CS+ starts by using "before
execution break" resource to set Hardware Break events, and as soon as that resource becomes
unavailable, uses "after execution break" resource (see "2.16.7.1 Maximum number of enabled
events"). For this reason, you cannot select between before and after execution.

Remark 2. [E1][E20][EZ Emulator][COM Port]
Hardware Break events (execution type) break the program after the instruction at the specified
address is executed.

Remark 3. [Simulator]
For a Hardware Break event (execution type), you can select between "before execution break"
which breaks before the instruction at the specified address is executed and "after execution break"
which breaks after the instruction at the specified address is executed (see "2.9.1.3 [Simulator]").

(3) Software break function (except for [Simulator])
Temporarily replaces the instruction code for a specified address with a break instruction and stops the program
when this instruction is executed.

Caution 1. If a forced break is performed while in standby mode (HALT/STOP), the current PC position will indicate
the address of the next instruction after the standby mode instruction.
This behavior differs depending on the debug tool used.

- For other than [Simulator]
The forced break will release standby mode.

- [Simulator]
The forced break will not release standby mode.
It will appear that standby mode has been released. Check the CPU status on the Main window's sta-
tusbar to see if standby mode has been released.

Caution 2. [E1][E20][EZ Emulator][COM Port]
Do not decrease the voltage of the target system during a break. A reset that is generated by the low-
voltage detector (LVI) or by power-on-clear (POC) during a break causes an incorrect operation of CS+
or communication errors.
A break during emulation of power supply off also causes communication errors.

Remark When the program in execution is stopped, a statement of the cause of the break appears on the Status-
bar in the Main window.

2.9.1 Configure the break function

Before the break function can be used, it is necessary to make settings relating to the operation of a break.
This break operation can be configured in the [Break] category on the [Debug Tool Settings] tab of the Property panel.
The setting method differs depending on the debug tool used.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 44 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2.9.1.1 [IECUBE]
2.9.1.2 [E1)/[E20)/[EZ Emulator]/[COM Port]
2.9.1.3 [Simulator]

2.9.1.1 [IECUBE]

Figure 2.32 [Break] Category [IECUBE]
4 Bresk

(1)

)

@)

(4)

First u=ing ivpe of broakpant Sofiware broak
S1op erulation of timer growp wihean stopping [H]

Sieg erulatien of erial greup when slapping Ma

Use epen bredk {unctien Koot zignal)

[First using type of breakpoint]
Specify the type of preferential breakpoint with a single click of the mouse in the Editor panel/Disassemble panel.
Select from the drop-down list below for each use of the breakpoint.

Hardware break Sets hardware breakpoint with priority, by using the Hardware break function.
Once set, it is treated as a Hardware Break event (execution system).

Software break Sets software breakpoint with priority, by using the Software break function (except for
[Simulator]) (default).
Once set, it is treated as a Software Break event.

Caution If the number of the set breakpoints of the specified type exceeds the limit settable (see "2.16.7.1
Maximum number of enabled events"), a breakpoint of another type will be used.

[Stop emulation of timer group when stopping]

Select whether to terminate the peripheral emulation of timers while stopping the program execution (Peripheral
Break).

Select [Yes] to terminate (default: [No]).

[Stop emulation of serial group when stopping]

This property appears only when the selected microcontroller supports the function that terminates the peripheral
emulation of serials (Peripheral Break).

Select whether to terminate the peripheral emulation of serials while stopping the program execution.

Select [Yes] to terminate (default: [No]).

[Use open break function]

This property appears only when the selected microcontroller supports the open break function.
Select from the following drop-down list whether to use the open break function.

The default value depends on the type of the selected microcontroller.

Yes(Hi-Z) The open break target pin becomes the Hi-Z state after the CPU is stopped.

No(Output signal) The open break target pin outputs the signal even after the CPU is stopped.

2.9.1.2 [E1]/[E20)/[EZ Emulator]/[[COM Port]

Figure 2.33 [Break] Category [E1][E20][EZ Emulator][COM Port]
4 Break

(1)

Frst usming fype of breakpont Software break
aiop erulation of tirer group when stopping]

S1o0p emulation of serial group when stapping Ha

Festore the breskpaint when pinreset pceurs Yes

[First using type of breakpoint]

This property appears only when the selected microcontroller supports multiple types of breakpoint.

Specify the type of preferential breakpoint with a single click of the mouse in the Editor panel/Disassemble panel.
Select from the drop-down list below for each use of the breakpoint.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 45 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Hardware break Sets hardware breakpoint with priority, by using the Hardware break function.
Once set, it is treated as a Hardware Break event (execution system).

Software break Sets software breakpoint with priority, by using the Software break function (except for
[Simulator]) (default).
Once set, it is treated as a Software Break event.

Caution If the number of the set breakpoints of the specified type exceeds the limit settable (see "2.16.7.1
Maximum number of enabled events"), a breakpoint of another type will be used.

(2) [Stop emulation of timer group when stopping]
Select whether to terminate the peripheral emulation of timers while stopping the program execution (Peripheral
Break).
Select [Yes] to terminate (default: [No]).
In the case of the selected microcontroller that provides the open break function, when this property is set to [Yes],
the open break target pin becomes the Hi-Z state after the CPU is stopped (when this property is set to [No], the
open break target pin outputs the signal even after the CPU is stopped).

(3) [Stop emulation of serial group when stopping]
This property appears only when the selected microcontroller supports the function that terminates the peripheral
emulation of serials (Peripheral Break).
Select whether to terminate the peripheral emulation of serials while stopping the program execution.
Select [Yes] to terminate (default: [No]).

(4) [Restore the breakpoint when pin reset occurs]
This property only appears if the selected microcontroller supports the function of restoring breakpoints after a pin
reset and the [Permit flash programming] property in the [Flash] category on the [Connect Settings] tab is set to
[Yes].
Select whether to restore the breakpoints when a pin reset occurs.
When [Yes] is selected, the CPU is briefly halted for restoration of the breakpoints after a pin reset (default).
When [No] is selected, the breakpoints are ignored and not restored after a pin reset, but are restored when the
program is stopped.

2.9.1.3 [Simulator]

Figure 2.34 [Break] Category [Simulator]

4 Hreak
Execute nzlructlion 31 bregkpart wken break Mo

(1) [Execute instruction at breakpoint when break]
You can specify the timing to stop the program execution by breakpoints whether after or before the execution of
the instruction at the breakpoint. Specify in this property whether to break after executing the instruction.
Select [Yes] to break after execution of the instruction (default: [No]).
All set breakpoints are handled as Hardware Break events.

Caution When [Yes] is selected, all of action events currently being set are handled as Hardware Break
events (see "2.15 Set an Action into Programs").

2.9.2 Stop the program manually

The program in execution is forcibly stopped by clicking the button on the debug toolbar.

2.9.3 Stop the program at the arbitrary position (breakpoint)

The program in execution can be stopped at the arbitrary position by setting a breakpoint. A breakpoint can be set by
one-clicking with the mouse.

You need to configure the type of breakpoints to use before setting a breakpoint.

This section describes the following operations.

2.9.3.1 Set a breakpoint
2.9.3.2 Edit a breakpoint

R20UT5301EJ0100 Rev.1.00 ENESAS Page 46 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

2.9.3.3 Delete a breakpoint

2.9.3.1 Set a breakpoint

Breakpoints can be set via the Editor panel/Disassemble panel in which the source text/disassembly text is displayed.

Within the Main area (Editor panel) or Event area (Disassemble panel) in which a valid address is displayed, click on the
location where you want to set a breakpoint. A breakpoint whose type is being selected in the [First using type of break-
point] property is set to the instruction at the start address corresponding to the clicked line.

When a breakpoint is set, the following event mark appears at the breakpoint location, and the source text line/disas-
sembled text line is highlighted.

Itis interpreted as if a break event (Software Break or Hardware Break) has been set at the target address, and it is
managed in the Events panel (see "2.16 Manage Events" for details).

Table 2.4

Event Marks of Breakpoint

Type of Breakpoint

Event Type

Event Mark

Hardware breakpoint

Hardware Break eventNote

Software breakpoint
(except [Simulator])

Software Break eventNote

a7

Note

In the [Name] area of the Events panel, "Break" is displayed as the event type name.

Figure 2.35 Breakpoint Setting Example (Disassemble Panel)

Event area
Indicates that a software i for(i=0: i<1000:
breakpoint has been set. r*'f' nod=2n (+9 fg CLREW
00421 |+a 16 MO
_ n0422 (+b 17 MOy
e patareiwe || 00423k saei0g _ CHe
P S 00425 |¥F del§ BHE
74 MO s
Figure 2.36 Example of Setting Breakpoint in Events Panel
Events £l
Ll s =l
MName Cigtail Cramment
f “°Pun-Bresk Timer Motwesswed
i W BreaklOl] Evecution r_wainc#7 biica)
4 =2 Unconditional Trace =

Caution 1. Since a breakpoint is set as a break event and managed as a event, restrictions apply to the number of
breakpoints that can be simultaneously set. Also see "2.16.7 Notes for setting events" for details on
breakpoints (e.g. limits on the number of enabled events).

Caution 2. No software breakpoints can be set to the data flash memory area.

Caution 3. Breakpoints can only be set at lines that have valid addresses.

Remark 1. Event marks differ depending on the event state (see "2.16.1 Change the state of set events (valid/
invalid)").

When an event is set at the point where other event is already set, the event mark (h,_.o) is displayed
meaning more than one event is set at the point.

Remark 2. [Simulator]

The type of breakpoint that can be set is locked to hardware breakpoints.

R20UT5301EJ0100 Rev.1.00
Jun 01, 2023

RENESAS

Page 47 of 413

CS+V8.10.00 2. FUNCTIONS

Remark 3. For other than [Simulator]
You can set hardware breakpoints/software breakpoints without depending on the specification of "2.9.1
Configure the break function" by following the step below.
Note, however, that "Operation 1" is only available in the Disassemble panel.

Type Operation 1 Operation 2

Hardware breakpoint [Ctrl] + mouse click Select [Break Settings] >> [Set Hardware Break]
from the context menu.

Software breakpoint [Shift] + mouse click Select [Break Settings] >> [Set Software Break]
from the context menu.

2.9.3.2 Edit a breakpoint

It is possible to edit a breakpoint you have set.
For details on how to do it, see "2.16.4.1 Edit execution-related events".

Caution This function applies to only a breakpoint whose type is Hardware Break.

2.9.3.3 Delete a breakpoint

Click event marks displayed in the Editor panel/Disassemble panel to delete set breakpoints (the event mark will be
erased).

2.9.4 Stop the program at the arbitrary position (break event)

The program in execution can be stopped at the arbitrary position by setting a break event (execution type).
This section describes the following operations.

2.9.4.1 Set a break event (execution type)
2.9.4.2 Edit a break event (execution type)
2.9.4.3 Delete a break event (execution type)

2.9.4.1 Set a break event (execution type)

Perform this operation in the Editor panel/Disassemble panel in which the source text/disassembly text is displayed.
Follow the operation listed below from the context menu, in accordance with your desired event type, after moving the
caret to the target line that has a valid address.

Event Type Operation Description
Hardware Break Select [Break Settings] >> [Set Hardware | Sets a Hardware Break event by using the Hard-
Break] ware break function.
Software Break Select [Break Settings] >> [Set Software Sets a Software Break event by using the Soft-
(except [Simulator]) | Break] ware break function (except for [Simulator]).

Combination Break | Select [Break Settings] >> [Set Combina- | A combined break event, that is, a break condi-
[E1][E20] tion Break] tion that is a combination of multiple break
events, may be set as the target event condition
on the E1 and E20N°® (see "Edit combination
conditions of events [E1] [E20]").

Note [E1][E20]
This function is enabled only when the selected microcontroller supports a combination break event.

A break event is set to the instruction at the start address corresponding to the line of the caret position. When a break
event (execution type) is set, the following event mark appears at the break event location, and the source text line or dis-
assembled text line will be highlighted.

When you have performed this operation, the set break event is managed in the Events panel as a Hardware Break
event (execution type)/Software Break event (execution type) or a execution-related event in the detailed information on a

R20UT5301EJ0100 Rev.1.00 ENESAS Page 48 of 413
Jun 01, 2023

CS+V8.10.00

2. FUNCTIONS

Combination Break event (see "2.16 Manage Events" for details).

Table 2.5 Event Marks of Break Event

Event Type

Event Mark

Hardware Break

Software Break
(except [Simulator])

Combination Break
[E1][E20]

Figure 2.37 Break event Setting Example (Disassemble Panel)

Event area
Indicates that a software 17 forCi=0: i<1000:
break event has been set. l‘*“'?' o420 (¥8 fE CLRW
00421 (+a 16 MOy
Indicates that a hardware 00422 |+h 17 M0 W
break event has been set. 00423 [+c 442803 CHPHW
W noaze ¥ del$ BHE
74 MOPC)

Figure 2.38 Example of Setting Hardware Break Event (Execution Type) in Events Panel

Events 5|
X 0|05 &5] = 0 F
Harre Detanl Camment
[¥] == Rur—Break Timer Hot messured

< [] %, Hardware Eresk 000

Afer Exscuton GO mancks? 0x245

[¥] = Uncordifmnal Trace

Figure 2.39 Example of Setting Combination Break Event (Execution Type) in Events Panel [E1][E20]

[¥] == Uncarnditonal Trace

Events =]
X M| |5| 85 £ 5 @

Harre Detanl Cammeant

== Pun—Ereak Timer bkt measured

G W5 Gombination Break R

Dietail

|-"|ﬂ;|=r Execution UG_mamc 2 025 X

Harre Detail Caomenznt

Caution 1. When setting a break event (execution type), also see "2.16.7 Notes for setting events" for details (e.g.
limits on the number of valid events).

Caution 2. No software breakpoints can be set to the data flash memory area.

Remark Event marks differ depending on the event state (see "2.16.1 Change the state of set events (valid/

invalid)"). When an event is set at the point where other event is already set, the event mark (HI_,@)is

displayed meaning more than one event is set at the point.

R20UT5301EJ0100 Rev.1.00
Jun 01, 2023

RENESAS

Page 49 of 413

CS+V8.10.00 2. FUNCTIONS

2.9.4.2 Edit a break event (execution type)

It is possible to edit a break event (execution type) you have set.
For details on how to do it, see "2.16.4.1 Edit execution-related events" or "2.16.4.3 Edit combination conditions of
events [E1] [E20]".

Caution This function applies to only a break event (execution type) whose type is Hardware Break or Combina-
tion Break [E1][E20].

2.9.4.3 Delete a break event (execution type)

To delete a break event (execution type) you have set, click the event mark displayed in the Editor panel/Disassemble
panel.

Also, there is another way to delete a set break event. Select a Software Break event/Hardware Break event, or Com-
bination Break event [E1][E20] in the Events panel, and then click the button in the toolbar (see "2.16.5 Delete
events").

Caution In the Events panel, you cannot delete a break event (execution type) selectively in the combination
breaks. All the break events (including access type) displayed in the detailed information on the combina-
tion break will be deleted.

2.9.5 Stop the program with the access to variables/SFRs

By setting a break event with the access, the program can be stopped when an arbitrary variable or SFR is accessed
with the specified type.

You can also limit the accessed value.

The following types can be specified with the access.

Table 2.6 Types of Accesses to Variables

Access Type Description
Read The program is stopped with the read access to (after reading) the specified variable/SFR.
Write The program is stopped with the write access to (after writing) the specified variable/SFR.
Read/Write The program is stopped with the read access/write access to (after reading or writing) the
specified variable/SFR.

Caution [IECUBE][E1][E20][EZ Emulator][COM Port]
The program is stopped with the access via DMA (Direct Memory Access).

This section describes the following.

2.9.5.1 Set a break event (access type)
2.9.5.2 Edit a break event (access type)
2.9.5.3 Delete a break event (access type)

2.9.5.1 Set a break event (access type)

Use one of the following methods to set a break event (access type) that stops programs with the access to a variable/
SFR.

Caution 1. Also see "2.16.7 Notes for setting events" for details on breakpoints (e.g. limits on the number of enabled
events).

Caution 2. For other than [Simulator]
The access break events described here cannot be set for 32-bit (4-byte) variables.
Additionally, accessing a single byte of a 16-bit (2-byte) variable will not be detected as an access.

(1) Seta break event to a variable/SFR in the Editor panel/Disassemble panel
Perform this operation in the Editor panel/Disassemble panel in which the source text/disassembly text is dis-
played.

R20UT5301EJ0100 Rev.1.00 RENESAS Page 50 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Follow the operation listed below from the context menu, in accordance with your desired access type, after
selecting an arbitrary variable or SFR on the source text/disassembled text. Note, however, that only global vari-
ables, static variables inside functions, and file-internal static variables can be used.

Access Type Operation

Read Select [Break Settings] >> [Set Read Break to]/[Set Read Combination Break to]Note, and
then press the [Enter] key.

Write Select [Break Settings] >> [Set Write Break to]/[Set Write Combination Break to]NOte, and
then press the [Enter] key.

Read/Write Select [Break Settings] >> [Set R/W Break to]/[Set R/W Combination Break to]NOte, and then
press the [Enter] key.

Note [E1][E20]
A combined break event, that is, a break condition that is a combination of multiple break events,
may be set as the target event condition on the E1 and E20 (see "2.16.4.3 Edit combination condi-
tions of events [E1] [E20]").
Note, however, that this function is enabled only when the selected microcontroller supports a com-
bination break event.

At this time, if you have specified a value in the text box in the context menu, break will occur only when the spec-
ified value is used for the reading, writing or reading/writing. On the other hand, if no value is specified, reading.,
writing or reading/writing the selected variable by any value will cause the break to occur.

Caution 1. Variables within the current scope can be specified.

Caution 2. Variables or SFR at lines that have no valid addresses cannot be used for break events.
Figure 2.40 Example of Setting Break Event (Access Type) on Variable in Editor Panel

| Jump to Function

fl‘ Tag Jump Shifft

From the context menu above the variable "data1"
enter a value in [Break Settings] >> [Set Writ
Break to], then press the [Enter] key.

Here, the program will break when the value "Oxb"
is written to the variable "data1".

= w™ | Colunng 3‘_‘, Jump to Disassemble

o O Bockmarks

reE i
i.ma.i Adhvanced

[

b| ¥, Set Hardware Break

b lad Sel Read Break Lo

b [set write Bresk t@
(Il Set RSW Break to

i * Bl datai= 11{i1:) |rot edit commen? gerersted herl i) preak Option

R20UT5301EJ0100 Rev.1.00 ENESAS Page 51 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Figure 2.41 Example of Setting Combination Break Event (Access Type) on Variable in Editor Panel [E1][E20]

Jump to Function
From the context menu above the variable "data1",

-
i Tag Jump Shift4 enter a value in [Break Settings] >> [Set Writ Com-
e

= w= | Colummy

bination Break to], then press the [Enter] key.
Here, the program will break when the value "Oxb"
is written to the variable "data1".

Jump to Disassemmpe

ol G Bookmarks

:
Tr?ﬁ;! Advanced

Set Hardware Broak

Set Software Break

Sek Read Combination Break bo
BT e - [, Set Write Combination Break to 0xb)
TFE datai= 1 1ib) ot edit comment generaed her [# Set R/W Combination Break to

|~"_‘*r Break Qption

A H B

(2) Seta break event (access type) to a registered watch-expression
You can set break events in the Watch panel.
Follow the operation listed below from the context menu, in accordance with your desired access type, after
selecting the registered watch-expression (multiple selections not allowed).
Note, however, that only global variables, static variables inside functions, file-internal static variables, and SFR

can be used.
Access Type Operation
Read Select [Access Break] >> [Set Read Break to]/[Set Read Combination Break to]N°te, and
then press the [Enter] key.
Write Select [Access Break] >> [Set Write Break to]/[Set Write Combination Break to]N°‘e, and then
press the [Enter] key.
Read/Write Select [Access Break] >> [Set R/W Break to]/[Set R/W Combination Break to]N°te, and then
press the [Enter] key.
Note [E1][E20]

A combined break event, that is, a break condition that is a combination of multiple break events,
may be set as the target event condition on the E1 and E20 (see "2.16.4.3 Edit combination condi-
tions of events [E1] [E20]").

Note, however, that this function is enabled only when the selected microcontroller supports a com-
bination break event.

At this time, if you have specified a value in the text box in the context menu, break will occur only when the spec-
ified value is used for the reading., writing or reading/writing. On the other hand, if no value is specified, reading.,
writing or reading/writing the selected watch-expression by any value will cause the break to occur.

Caution A watch-expression within the current scope can be specified.
To target a watch-expression outside the current scope, select a watch-expression with a specified
scope.
R20UT5301EJ0100 Rev.1.00 -zENESAS Page 52 of 413

Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Figure 2.42 Example of Setting Hardware Break Event (Access Type) on Watch-Expression

Watch1 E
@ @ L U] W | Motation- |[FHe
Watch Yalue Type(Byle Size) Address Mewo |

I\ Trace Output v |46 Set Write Break toa(| 0xb

| From the context menu above the watch-expression "data1",
enter a value in [Access Break] >> [Set Write Break to], then
| ?d press the [Enter] key.
Here, the program will break when the value "0xb" is written to
the watch-expression "data1".

Figure 2.43 Example of Setting Combination Break Event (Access Type) on Watch-Expression [E1][E20]

Watch1 =|

| & L, U] % | Mokation- ||

Fak ch Walue Type(Byie Size) Pddress Nemo |

w ref\J Access Break k|4l Set Read Combination Break to

Trace Qutput » |46 Set Write Combination Break t|0xb [

From the context menu above the watch-expression "data1", Break to
- enter a value in [Access Break] >> [Set Write Combination
m Break to], then press the [Enter] key.
Here, the program will break when the value "Oxb" is written to
the watch-expression "data1".

When you have performed the above operation, the set break event (access type) is managed in the Events panel
as a Hardware Break event (access type) or a execution-related event in the detailed information on a Combina-
tion Break event (see "2.16 Manage Events" for details).

Figure 2.44 Example of Setting Hardware Break Event (Access Type) in Events Panel

Events &
L B R E Y
S Detail Ciomment
S =2 Fup-Break. Timer Mot measured
(i !ﬁ Hardware Braakl001 Sirite datal Ixdefoc - (kiefod == (xb)
W] == Uncorditional Trace -

R20UT5301EJ0100 Rev.1.00 ENESAS Page 53 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Figure 2.45 Example of Setting Combination Break Event (Access Type) in Events Panel [E1][E20]

Events]
AL Ll El RS
Mame: Detail Caomment
7] =2 Fun—Break Timar Hot measuwred
S % Combination Break OR
Detal
| rite datal Dctatbe = Oxfetbd == Ob |
Mams Cr=tail Camment
&= Unconditional Trace =

2.9.5.2 Edit a break event (access type)

It is possible to edit a break event (access type) you have set.
For details on how to do it, see "2.16.4.1 Edit execution-related events" or "2.16.4.3 Edit combination conditions of
events [E1] [E20]".

2.9.5.3 Delete a break event (access type)

To delete a break event (access type) you have set, select a Hardware Break event, or Combination Break event
[E1][E20] in the Events panel, and then click the button in the toolbar (see "2.16.5 Delete events").

For a Combination Break event [E1][E20], it is also possible to delete a break event (access type) by clicking on the
event mark on the Editor panel/Disassemble panel.

Caution In the Events panel, you cannot delete a break event (execution type) selectively in the combination
breaks. All the break events (including access type) displayed in the detailed information on the combina-
tion break will be deleted.

2.9.6 Stop the program when an invalid execution is detected [IECUBE]

The system forcibly breaks the program execution when unexpected program behavior such as invalid access to inter-
nal ROM/internal RAM/SFR/external memory is detected (fail-safe break function).

This function has various break conditions. Enable/disable each break condition in the [Fail-safe Break] category on the
[Debug Tool Settings] tab of the Property panel.

Caution The fail-safe break function becomes invalid during step execution.

Figure 2.46 [Fail-safe Break] Category
4 Fail-zafe Break

Hap when fetched fram felch profected ares s
stop when wrote fooweite protected area g
Stap when read from read protected SFR Yes
Shap when wrole fo write prelected SFR Yes
stop when overflowed user stack Mo
Stop when widarflomed user stack Mo
Uzar slack saction siack basz
hop when cperated winitalzed stack ponter Yes
Stop when read from uninitialized P Yeg
Stap when accessed (o non-mapping asa Yes
Hop when word miss=alien accessad s
Stop when received fail zafe from peripheral ies
Stop when occurred flash illzgal Mo

In the following property setting, select [Yes] to enable and [No] to disable the function from the drop-down list.

R20UT5301EJ0100 Rev.1.00 ENESAS Page 54 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

All the properties are set to [Yes] by default (with some exceptions).
- [Stop when fetched from fetch protected areal
- [Stop when wrote to write protected area]

- [Stop when read from read protected SFR]

- [Stop when wrote to write protected SFR]

- [Stop when overflowed user stack]Nte

- [Stop when underflowed user stack]No®

- [Stop when operated uninitialized stack pointer]
- [Stop when read from uninitialized RAM]

- [Stop when accessed to non-mapping area]

- [Stop when word miss-align accessed]

- [Stop when received fail safe from peripheral]

- [Stop when occurred flash illegal]

Note [No] is selected by default.
To set to [Yes], the [User stack section] property on the bottom must be set to the address of the user
stack section (default: [.stack_bss]).

2.9.7 Other break causes

The cause of the break other than the described above is as follows:
You can confirm the break cause with the Status message on the statusbar in the Main window.

Table 2.7 Other Break Causes

Break Cause Debug Tool to Use
IECUBE E1/E20/ E2 Simulator
EZ Emulator/
COM Port

Full of the trace memory™N°te 1 e - - v

An occurrence of Trace Delay Break Vs - - -
Execution time-over detected Vs - - -

An access to non-mapped area e - - v

A writing to write-protected area v - - v

An access to the odd number address by the word v - - e
width

An occurrence of Temporary BreakNot 2 7 7 v 7

An occurrence of Flash lllegal Break s - - -
lllegal action of program related to the peripheral chip e - - -
functionNote 3

Failure to execute/uncertain cause Vs Ve vy -

Full of the current consumption bufferNote 4 - - - v

E2 expansion function - - « -
Fully used the storage memory - - vy -

Note 1. The operation depends on the setting of the [Operation after trace memory is full] property in the [Trace]
category on the [Debug Tool Settings] tab of the Property panel.
R20UT5301EJ0100 Rev.1.00 REN ESNS Page 55 of 413

Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Note 2. A break that is internally used by CS+. (Users cannot use it.)
Note 3. See the documentation on peripheral emulation board to use.
Note 4. The operation is supported only by the simulator that supports the current consumption measurement.

2.10 Display/Change the Memory, Register and Variable

This section describes how to display/change the memory, register and variable.

2.10.1 Display/change the memory

The contents of the memory can be displayed and its values can be changed in the Memory panel below.
Select the [View] menu >> [Memory] >> [MemoryT - 4].

The maximum of 4 Memory panels can be opened. Each panel is identified by the names "Memory1", "Memory2",
"Memory3" and "Memory4" on the titlebar.
For details on the contents and function in each area, see the section for the Memory panel.

Figure 2.47 Display the Contents of Memory (Memory Panel)

Memory 1 =]
2| @8 | Motaticn- | Size Motation- | Encoding- View -
[] Whee: wehen Siop | finve |
[HI +1 +F 45 +4 +5 +5 +7 #0 +3 #a th o\ s=af T AOPTT

00920 BF BT EF C0J&) FC C1 EG|EF BA EF CO|&1 F) Display position specification area
007zl 02 00 FC I7)08 00 FC D1 (07 o0 FC FLIDT e o TACTERE CERECTRE
00740 07 CF F& IG017 44 14 00(DE OF FC E3 |01 00 &F EF M0 0T
00720 | F3 Cs D7 CTIFE 96 17 44|04 00 [E 02 |AF EF F7 CE .0
COTF0 07 CF F6 TSH17 44 04 00|DE OF FC 03 {02 00 &7 EF Y I
0nzon | F3 C= D7 % FE 16 17 44|04 00 DE 03 |AT EF F7 CE B T
0nz10 | oy S 77 FC 43 02 O0|FC 32 02 00 |FC 4E 02 00 T Tl 12 T .
00220 | F5 FO02 F5)79 00 07 71|78 F& FC 11|02 00 71 74 019007, 92
00220 | FA DF FE ADIFF 71 74 AT|71 4B &4 71|64 &1 OF F3 T2k g1t <

| | | 1 I 'l | |
(1)) @)

(1): Address area

(2): Memory value area

(3): Character strings area

Remark You can set the scroll range (as start and end address) of the vertical scroll bar on this panel via the

Scroll Range Settings dialog box that is opened by clicking the button from [View] on the toolbar.

This section describes the following.

2.10.1.1 Specify the display position

2.10.1.2 Change display format of values

2.10.1.3 Modify the memory contents

2.10.1.4 Display/modify the memory contents during program execution
2.10.1.5 Search the memory contents

2.10.1.6 Modify the memory contents in batch (initialize)

2.10.1.7 Save the memory contents

2.10.1.1 Specify the display position

It is possible to specify the display start position of the memory contents by specifying an address expression in the dis-
play position specification area (starting with address 0x0 by default).

Remark An offset value of the display start position of memory values can be set via the Address Offset Settings
dialog box that is opened by selecting [Address Offset Value Settings...] from the context menu.

R20UT5301EJ0100 Rev.1.00 RENESAS Page 56 of 413
Jun 01, 2023

CS+V8.10.00

2. FUNCTIONS

Figure 2.48 Display Position Specification Area (Memory Panel)

| Move when Stop

Lo |

(1) Specify an address expression
Directly enter the address expression of the memory value address to display in the text box. You can specify an
input expression with up to 1024 characters. The result of the expression is treated as the display start position

address.

Note that if an address value greater than the microcontroller address space is specified, the high-order address

value is masked.

An address value greater than the value expressed within 32 bits cannot be specified.

Remark 1. A symbol name at the current caret position can be complemented by pressing the [Ctrl] + [Space]
key in this text box (see "2.20.2 Symbol name completion function").

Remark 2. If the specified address expression is the symbol and its size can be recognized, everything from
the start address to the end address of that symbol is displayed selected.

(2) Specify automatic/manual evaluation of the address expression
The timing to change the display start position can be determined by specifying in the [Move when Stop] check

box and the [Move] button.

[Move when Stop]

The caret is moved to the address which is automatically calculated from the
address expression after the program is stopped.

(]

The address expression is not automatically evaluated after the program is stopped.
Click the [Move] button to manually evaluate the address expression.

[Move]

When the [Move when Stop] check box is not checked, click this button to evaluate
the address expression and move the caret to the result address of the evaluation.

2.10.1.2 Change display format of values

The display format of the address area/memory value area/character strings area can be changed using buttons below

on the toolbar.

Notation

The following buttons to change the notation of memory values are displayed.

Hexadecimal

Displays memory values in hexadecimal number (default).

Signed Decimal

Displays memory values in signed decimal number.

Unsigned Decimal

Displays memory values in unsigned decimal number.

Octal

Displays memory values in octal number.

Binary

Displays memory values in binary number.

Size Notation

The following buttons to change the notation of sizes of memory values are dis-
played.

4 Bits

Displays memory values in 4-bit width.

1 Byte

Displays memory values in 8-bit width (default).

2 Bytes

Displays memory values in 16-bit width.
Values are converted depending on the endian of the target memory area.

E 4 Bytes

Displays memory values in 32-bit width.
Values are converted depending on the endian of the target memory area.

8 Bytes

Displays memory values in 64-bit width.
Values are converted depending on the endian of the target memory area.

Encoding

The following buttons to change the encoding of character strings are displayed.

R20UT5301EJ0100 Rev.1.00
Jun 01, 2023

RENESAS Page 57 of 413

CS+V8.10.00 2. FUNCTIONS

ASCII Displays character strings in ASCII code (default).

Bid| Shift_JIS Displays character strings in Shift_JIS code.

EUC-JP Displays character strings in EUC-JP code.

["F]| UTF-8 Displays character strings in UTF-8 code.

[“El| UTF-16 Displays character strings in UTF-16 code.

Half-Precision Float Displays character strings as a half-precision floating-point value.

rie|| Float Displays character strings as a single-precision floating-point valugNote,

Double Displays character strings as a double-precision floating-point valueNot.

Float Complex Displays character strings as a complex number of single-precision floating-
pointNote,

Double Complex Displays character strings as a complex number of double-precision floating-
pointNote,

Float Imaginary Displays character strings as an imaginary number of single-precision floating-
pointNote,

Double Imaginary Displays character strings as an imaginary number of double-precision floating-
pointNote,

View The following buttons to change the display format are displayed.

Settings Scroll Range... Opens the Scroll Range Settings dialog box to set the scroll range for this panel.

Column Number Settings... Opens the Column Number Settings dialog box to set the number of view col-
umns in the memory value area.

Address Offset Value Settings... | Opens the Address Offset Settings dialog box to set an offset value for
addresses displayed in the address area.

Note For details on the display of a floating-point value, see the section for the Memory panel.

2.10.1.3 Modify the memory contents

The memory values can be edited.

Directly edit from the keyboard after moving the caret to the line to modify in memory value area/characters area.

The color of the memory value changes when it is in editing. Press the [Enter] key to write the edited value to the target
memory (if the [Esc] key is pressed before the [Enter] key is pressed, the editing is cancelled).

However, the character string that can be inputted during the editing is limited to that character string that can be han-
dled by the display notation that has been currently specified. In the character strings area, modification can only be made
with "ASCII" character code.

This operation can be taken place while the program is in execution. See "2.10.1.4 Display/modify the memory con-
tents during program execution" for details on how to operate it.

When you modify the values, be aware of the following examples.

Example 1. The value exceeds the upper limit of the display bit wide
If you edit the display value "105" as "1" to "3" in the decimal 8-bit display, the value will be changed to
the upper limit of "127".

Example 2. The symbol, "-" is entered between numbers
If you edit the display value "32768" as "32-68" with signed decimal 16-bit display, "3" and "2" are
changed to the blank and the value is changed to "-68".

Example 3. The blank symbol (space) is entered between numbers
If you edit the display value "32767" as "32 67", "3" and "2" are changed to the blank and the value is
changed to "67".

R20UT5301EJ0100 Rev.1.00 RENESAS Page 58 of 413
Jun 01, 2023

CS+V8.10.00 2. FUNCTIONS

Example 4. The same value is entered
Even if the same value as the current memory value is specified, the specified value is written to the
memory.

2.10.1.4 Display/modify the memory contents during program execution

The Memory panel/Watch panel has the real-time display update function that can update/modify the display contents of
the memory/watch-expression in real-time while executing the program.

Using the real-time display update function allows you to display/modify the value of memory/watch-expression not only
while the program is stopped, but also in execution.

The real-time display update function is realized by the RRM function (reading) [I[ECUBE][Simulator], a RAM monitor
function (reading) (other than [Simulator]) or by the DMM function (modifying). Each function has a different area that can
be used for reading and writing.

Firstly, enable the real-time display update function by making the basic settings below on the [Debug Tool Settings] tab
of the Property panel.

Table 2.8 Basic Settings for Real-time Display Update Function

Category Property Set Value
[Access memory while running] [Update display during the execution] [Yes] (default)
[Display update interval[ms]] except [COM Port]

[Integer number between 100 and
65500]
[COM Port]
[Integer number between 5000 and
65500]

Caution Local variables are not subject to the real-time display update function.

Remark See "2.10.1.3 Modify the memory contents" or "2.10.6.6 Modify the contents of watch-expressions" for

details on how to modify values in the Memory panel/Watch panel.

(1) RRM function (reading) [IECUBE][Simulator]
This function is used to read the contents of the memory or of watch-expressions in real-time during execution of a
program.
The following area can be read by the RRM function.
Memory and watch-expressions allocated to this area can always be displayed in real-time.

Table 2.9 Target Area of RMM Function

Area IECUBE Simulator

Internal ROM g Note 1 v
Internal RAM (except register area) e Ve
Data flash e -
Emulation memory - v
Target memory - v
CPU register v Note2 - Note 3
SFR . - Note 3

Note 1. This refers to data that were in the cache before execution, to the values are not real-time.

Note 2. Possible only for general-purpose registers and PC

Note 3. Impossible during tracer/timer execution

(2) RAM monitor function (reading) (other than [Simulator])

R20UT5301EJ0100 Rev.1.00 RENESAS Page 59 of 413
Jun 01, 2023

CS+V8.10.00

@)

This function is used to read the contents of memory or a watch-expression through software emulation by briefly
halting the program.
The following area can be read by the RAM monitor function.

Caution If CPU status shifts to the standby mode (HALT/STOP/IDLE) mode, a monitor time-out error will
occur.

Table 2.10 Target Area of RAM Monitor Function

2. FUNCTIONS

Area IECUBE E1/E20/EZ Emulator/COM Port
Internal ROM -Note 1 -
Internal RAM (except register area) Note 1 e
Data flash Note 1 v
Emulation memory - -
Target memory v -
CPU register 7 s Note2
SFR v o Note 3
Note 1. When it is available, priority is given to the RRM function. That is, the RAM monitor function is not
used in such cases.
Note 2. This only applies to the general-purpose registers corresponding to the bank specification.

Note 3. This does not apply to BCDADJ.

Note that to enable the RAM monitor function, the setting below is required in addition to the Basic Settings for
Real-time Display Update Function.

Category Property Set Value

[Access memory while running] [Access by stopping execution] [Yes]

DMM function (modifying)
This function is used to write to the memory or watch-expressions in real-time during execution of a program.
The following area can be modified by the DMM function.

Caution If CPU status shifts to the standby mode (HALT/STOP/IDLE) mode, a monitor time-out error will
occur.

Table 2.11 Target Area of DMM Function

Area IECUBE E1/E20/EZ Emulator/ Simulator
COM Port

Internal ROM - - i
Internal RAM (except register area) A A i
Emulation memory - - i
Target memory A - i
CPU register A P {yNote 2
SFR A *Note 3 I::INote 2

ik Possible by briefly halting execution

i Possible without briefly halting execution

Note 1. This only applies to the general-purpose registers corresponding to the bank specification.

Note 2. Impossible during tracer/timer execution

Note 3. Possible