LENESANS

-
o
)
ﬁ-
7
<
Q
S
-
QL

RL78 Family
EEPROM Emulation Software
RL78 Type 01

User’s Manual

RENESAS Microcontrollers
RL78/G2x

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published by Renesas Electronics Corp.
through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Rev.1.20 Sep 2023

www.renesas.com

N

1.

12.

13.
14.

otice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of
these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or
other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system;
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims
any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is
inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not
limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products
are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury,
injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety
design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging
degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most up-to-date
Koto-ku, Tokyo 135-0061, Japan version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered trademarks
are the property of their respective owners.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit
Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products
covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1.

Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must
be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate.
When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices
must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work
benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare
hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register
settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the
states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product
that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which
resetting is specified.

Input of signal during power-off state

Do not input signals or an 1/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /O pull-
up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow
the guideline for input signal during power-off state as described in your product documentation.

Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in
the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a
reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an
external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V. (Max.) and
Vi (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is
fixed, and also in the transition period when the input level passes through the area between V. (Max.) and Vi1 (Min.).

Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSl is not guaranteed.

Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The
characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of
internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating
margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for

the given product.

How to Use This Manual

Readers

This manual is intended for users who wish to understand the features of the RL78 microcontrollers
EEPROM Emulation and to use the EEPROM Emulation Software (EES) RL78 Type 01 in designing and
developing application systems.

Purpose

This manual is intended to give users an understanding of the methods for using the EEPROM Emulation
Software (EES) RL78 Type 01 to reprogram the data flash memory in the RL78/G2x microcontroller (i.e.
write constant data by the application).

Organization
This manual is separated into the following sections.
- Overview
- System Configuration
- EEPROM Emulation
- Using EEPROM Emulation
- User Interface
- Sample Programs
- Creating a Sample Project for EES RL78 Type 01

How to Read this Manual

It is assumed that the readers of this manual have general knowledge in the fields of electrical
engineering, logic circuits, microcontrollers, C language, and assemblers.

To understand the hardware functions of the RL78/G2x:
- Refer to the User's Manual of the target RL78/G2x device.

Conventions
- Data significance: Higher digits on the left and lower digits on the right
- Active low representations: xxx (overscore over pin and signal name)
- Note: Footnote for item marked with Note in the text
- Caution: Information requiring particular attention
- Remark: Supplementary information
- Numeric representation:
Binary: xxxx or xxxxB
Decimal: xxxx
Hexadecimal: xxxxH or Oxxxxx
- Prefixes indicating power of 2 (address space and memory capacity):
K (kilo) 2"° = 1024
M (mega) 2°° = 1024°

+ Related Documents

The related documents indicated in this publication may include preliminary versions. However,
preliminary versions are not marked as such.

No Document Title Document Number
1 RL78/G23 User's Manual Hardware RO1UHO0896EJ
2 RL78/G22 User's Manual Hardware RO1UH0978EJ
3 RL78/G24 User's Manual Hardware RO1UHO0961EJ
4 RL78 Family Renesas Flash Driver RL78 Type 01 R20UT4830EJ

User's Manual

5 E1/E20/E2 Emulator, E2 Emulator Lite Additional Document for R20UT1994EJ
User’s Manual (Notes on Connection of RL78)

6 Renesas Flash Driver, EEPROM Emulation Software R20UT5228EJ
Target MCU List for RL78 - General-Purpose

Table of Contents

1. OVEIVIEW ...ttt e e e e e ettt e e e e e e e e ee et bt eeeeeeeeeeesssba e eeeeaeeeessssannaeaaens 10
1.1 (O 18 {11 [10
1.1.1 ULy 0T 1= U 10
LI ©7o] o1 (=Y 1) - J R 10
(IR T Y= 1 (- 11
1.4 Operating ENVIFONMENT ... ittt ettt et e e bt ab e e st e e eneeesnseesnneeeneeas 12
LRI =0T -3 (o] g =10 1] o TSRS 13
1.6 C ComPIiler DEfINILIONSoeiiiiiee ettt e et e e et e e e e bt e e e e ebaeeeeeabeeeesenbaeeeenrees 15
2. System ConfIQUIAtIONuiiiiiiiei e e e e e e e e e 17
P2 B V1 (= 0 W @7 o]) e U = (o] o OSSPSR 17
D S B N o 11 (Yo (U4 < 17
2.2.1 oy S =] oYl QRO 17
222 [y SR oo IR 18
D T 1 LTS { (U To ([YR 19
2.3.1 Folder StrUCIUre ... 19
2.3.2 I Qo 1Y 20
2.4 RESOUIMCES Of RLTB/G2X ..eeesseesseesssesssessssssssssssssessssesssesssssssssssssssssssessnsssssssennssnnnnns 22
241 [T g ol VN Y= T o TS SR 22
242 P [foTor=TiloT I il =1 (o o &= 23
243 Flash Operation MOAEuuiiiiiiiiii ettt e e e et e e e tre e e e et ae e e e nbeeeeenreas 24
2.5 Resources Used in EES RL78 TYPE 01 ...ttt sttt e 25
251 Sections Used in EES RL78 TYPE 071 ... ittt 25
252 SOftWAIE RESOUICES.......coeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt ettt ee et eeeeeeeeeeeeeeeeeeseseseeeseeennesennennnes 25
3. EEPROM EMUIGLON. ...t e e e e e e e e e e e e e e e eaaa s 26
3.1 Specifications of EEPROM EMUIALION..........cccoiiiiiiiiiie ettt et 26
B T2 @ V([U= LV Lo 1o o = 26
TR T s oo R 27
3.3.1 EES POOI State ... 27
3.3.2 STrUCIUrE OF EES BIOCKeviiiiiiiiii ettt ettt e e e e s e e e st te e e s eas e e e seaneeeesanraeessnreeaeanns 29
3.3.3 [S =] oYl g (== Lo [R 30
3.34 StruCtUre Of STOr@d Dataco ot e e e e e e e e e es 31
3.3.5 EES BIOCK OVEIVIEW ... 32
4. Using EEPROM EMUIALIONooiiiiiiiiiiieeee et e e e 34
4.1 Number of Stored User Data Items and Total User Data Sizeccccceeviieiiciiiii e 34
4.2 Initial Values t0 D SEE DY USEI.....ccueiiiiiieeece ettt ettt ee et e st eeae e e s e e snseeennee s 35
T U LT CT g (=T o 7= Lo - YRS 38
5.1 Request Structure (st_ees_request_t) SEtliNgScooiiiiiiiii e 38
511 USEI WIHEE ACCESS.... .o 39
51.2 UL gl =T Lo oo SRS 39
5.2 List of APl Functions and R_EES_Execute Function Commands forthe EESc.ccoveiiiiiieecenen. 40
5.21 APILFUNCGHONS fOr thE EES ...ttt e e e et e e e e e e e reeeeaeeeaan 40
52.2 Commands for R_EES Execute FUNCHON ... 41
523 RFD control APl functions for EES ... 42
LT T] v (T I = 1111 (o] 0 R 43
L N = 7= T (o3l 011 o g -1 o S 45
5.5 Command Operation FIOWChAI............cccuoiiiiiiii ettt et e e e ee e enaes 47

5.6 Data Type DEefiNIfiONS.......ccoiiiiiiii ettt e et e e sttt e st e et e e staeesnteeeteeesreeesnseeeteeenneeeans 48

5.6.1 = L= R Y/ 01 SO 48

5.6.2 GIODAI VAIADIES ...ttt e b e e 48
5.6.3 [o TU] 1T =T (1] o PSR 50
5.7 Specifications Of API FUNCHONSooiuiiiiii ettt et sae e sme e ebe e e saeeenas 52
5.7.1 Specifications of APl Functions for EES RL78 Type O01.......cccviiiiiiiee e 53
5.7.2 RFD Control APl FUNCHONS Or EESoiiiiee e e e 61
5.7.3 Internal FUNCioNs fOr the EES..........o e 63
6. SAMPIE PrOgramsScoo ittt e e e e e e e e e e e e e e 66
6.1 FlE SHUCIUIE ...ttt ettt e bt e s et e e ettt e sbe e e sateeeabeeesbeeesnneeebeeesaeeaaas 66
6.1.1 FOIAEI STIUCKUIE ...t b et r e b sae e 66
6.1.2 T3 o 1 = PSPPI 67
6.2 Data Type DEefiNIfIONS.......ccoiiiiiiie ettt e et e e st e e sate e et e e steeeanteeeteeeaseeesnteeebeeenneeeans 67
6.2.1 MBACIO DEFINES ...ttt et e s e e b e a e e b e e s bee e eabe e eans 67
6.3 Sample Program FUNCHONScooiiiiii ettt ettt sttt e e sbe e e st e e et e e e saeeesaneeebeeesaeeeaas 68
6.3.1 Sample Program for Controlling the EEPROM Emulation ... 68
6.4 Specifications of Sample Program FUNCONS.............oooiiiiii it 74
6.4.1 Sample Program Functions for Controlling the EEPROM Emulationccccccoeviieeiieiiieecieeee 74
6.5 Precautions in Case of Using Sample Programccooiiiiiieiiie et steeestee e sreeeseeeesteeesneee e 76
7. Creating a Sample Project for EES RL78 Type 01oooiiiiiiieeeeeeee e 77
7.1 Creating a Project in the Case of Using @ CC-RL COMPIIEr........cociiiiiiiiiiiiiieee e 77
711 Example of Creating @ Sample ProjECL.........cuuiii ittt 78
71.2 Example of Registration of Target Folders and Target Files..........ccccveiieiiiniiieceeeee e 81
7.1.3 =TT o I oo IS 1= 11T LRSS 83
7.1.4 DEbUQG TOOI SEEINGSeeeiieeiii bbbt b e e bt eans 91
7.2 Creating a Project in the Case of Using IAR COmPIlEr..........oo i 93
7.21 Example of Creating @ Sample Project...........oo e 94
7.2.2 Example of Registration of Target Folders and Target Files...........cccccoeiiviiieiiccie e 96
7.2.3 Integrated Development Environment(IDE) Settingscoveiiiiiiriieiie e 98
7.2.4 Linker Configuration File(.icf) SettiNgS.......cocii i 101
7.2.5 ON-Chip DEBUG SEHINGS ...t et sare e ebe e 104
7.3 Configurations Modify Procedure for Changing DeVICeccoeiiiiiiiiiiiieiiie e 105
7.3.1 CC-RL Compiler Environment SettiNgScceeiiiiiiiiiiee e 121
7.3.2 IAR Compiler ENvironment SEtiNGScoooiciiiiiiiiie e 125
7.3.3 Modifying the Sample Program (Common to CC-RL Compiler and IAR Compiler)c........... 129
8. REVISION HISTOIY ...t e e e e 134

8.1 Major Modifications in thiS REVISION..........c.eiiiiiiiiii e 134

Abbreviations

Abbreviation Description

EES EEPROM Emulation Software

RFD Renesas Flash Driver

API Application Program Interface
Background Operation

BGO Instructions in the code flash memory can be executed during reprogramming of the
data flash memory.
Random Access Memory

RAM Randomly accessible volatile memory. It is memory for holding values that are to be
changed during program execution.
Read-Only Memory

ROM Non-volatile memory. It is memory whose contents cannot be changed. The code flash
memory may be called ROM.

Terminology

Terminology

Description

Code flash memory

Flash memory for storing application code and constant data.
Note that this memory may be abbreviated as "CF" in this document.

Data flash memory

Flash memory for storing data.
Note that this memory may be abbreviated as "DF" in this document.

Extra area

Generic name of the configuration setting area, security setting area,
lock protection area, and boot swap setting area.

Flash memory sequencer

The RL78 microcontroller has a dedicated circuit for controlling the flash
memory. This circuit is called the flash memory sequencer in this
document. The flash memory sequencer consists of the code/data flash
area sequencer, which reprograms the code flash area or data flash area,
and the extra area sequencer, which reprograms the extra area.

Flash memory control mode

The flash memory sequencer has the following modes, which indicate the
programming enabled or disabled state.

- Code flash memory programming mode
- Data flash memory programming mode
- Non-programmable mode

Code flash memory
programming mode

The code flash memory (and extra area) can be reprogrammed in this
mode.

Data flash memory
programming mode

The data flash memory can be reprogrammed in this mode.

Non-programmable mode

The flash memory (and extra area) cannot be reprogrammed in this
mode.

Self-programming

A method of reprogramming the flash memory by executing a user
program instead of using an external flash memory programming tool.

RFD function

A generic term for the functions offered by the RFD.

EES function

A generic term for the functions offered by the EES.

RFD control functions for
EES

A generic term for the RFD control functions offered by the EES.

EES Block

An abbreviation of blocks that the EEPROM emulation software
accesses. In this user’s manual, EEPROM emulation blocks are hereafter
referred to as EES block.

EES RL78 Type 01 1. Overview

1. Overview

11 Outline

EEPROM emulation is a feature used to store data in the on-board flash memory in the same way as
EEPROM. In EEPROM emulation, EEPROM Emulation Software RL78 Type 01 operates the Renesas Flash
Driver (RFD) RL78 Type 01. And RFD writes and reads the data flash memory.

EEPROM Emulation Software RL78 Type 01 (hereafter called EES RL78 Type 01) is software for
reprogramming the data flash memory in the RL78/G2x.

For information on Renesas Flash Driver (RFD) RL78 Type 01, refer to the RL78 Family Renesas Flash
Driver RL78 Type 01 User's Manual.

111 Purpose

This manual is intended to give users an understanding of the methods for using the EEPROM Emulation
Software (EES) RL78 Type 01 to reprogram the data flash memory in the RL78/G2x microcontroller. (i.e.
write constant data by the application).

1.2 Contents

The API function of EES RL78 Type 01 is called from the user program. And reprogramming of the data in
the EEPROM emulation block (EES block) placed into the data flash memory is possible.

The EES RL78 Type 01 package includes the following.

« This user's manual

« Source code files of EES RL78 Type 01 for controlling the data flash memory incorporated in the
RL78/G2x.

« Sample program for operating the EES RL78 Type 01.

R20UT5008EJ0120 Rev.1.20 NS Page 10 of 136
Sep.28.23 RENES

EES RL78 Type 01 1. Overview

1.3 Features

EES RL78 Type 01 calls API functions for RFD RL78 Type 01 to operate the flash memory sequencer. Each
API function of EES RL78 Type 01 consists of a single sub-function or two or more sub-functions, and the
necessary processing is implemented by combinations of individual sub-functions and user processing. Such
a configuration is adopted so as to flexibly handle processing dependent on the user application, such as,
timeout processing in which the timeout value varies with the conditions of user application program
execution.

Figure 1-1 shows the flash memory control by the user application using the API functions of EES RL78
Type 01.

EES RL78 Type 01 provides sample programs of the processing that is implemented by combinations of two
or more API functions and user programs. Refer to the sample programs when embedding EEPROM
emulation processing in the user application.

User program

User application
(EES RL78 Type 01 API functions are called.)

EES RL78 Type 01 API functions
(RFD RL78 Type 01 API functions are called.)

RFD RL78 Type 01 API functions
(Flash memory sequencer is controlled.)

Flash memory hardware

Flash memory sequencer
(Hardware for controlling the flash memory)

¥

Data flash memory

Figure 1-1 Data Flash Memory Control Using APl Functions of EES RL78 Type 01

R20UT5008EJ0120 Rev.1.20 NS Page 11 of 136
Sep.28.23 RENES

EES RL78 Type 01

1. Overview

1.4 Operating

o Host Computer

Environment

The operation of EES RL78 Type 01 does not depend on the host computer but the appropriate

environment for the C compiler package, debugger and emulator must be prepared. (EES RL78 Type 01
was developed and tested on Windows10 Enterprise.)

o C Compiler Package
Table 1-1 shows the target C compiler packages for EES RL78 Type 01.

Table 1-1 The Target C Compiler Packages for EES RL78 Type 01

Compiler

IDE (Integrated Development
Environment)

Manufacturer

Version

CC-RL

CS+ or e? studio

Renesas Electronics

V1.10 or later

IAR

IAR Embedded Workbench®
for Renesas RL78

IAR Systems®

V4.21 or later

LLVM

e? studio

(Open Source Software)

V10.0.0.202306
or later

Note. Integrated development environment(IDE) and compiler must support the target device.

Emulator

Table 1-2 shows the emulator on which the operation of EES RL78 Type 01 was confirmed.

Table 1-2 Emulator on which EES RL78 Type 01 Operation was Confirmed

Emulator Manufacturer

E2 emulator

Renesas Electronics

E2 emulator Lite

Renesas Electronics

o Target MCU

RL78/G23, RL78/G22, RL78/G24

« EEPROM Emulation Software (EES)
Table 1-3 shows the EEPROM Emulation Software (EES) supported by this manual.
Table 1-3 The EEPROM Emulation Software (EES) Supported by this Manual

Package Manufacturer

Package Version

EES RL7

8 Type 01 Renesas Electronics

Ver 1.20

Note. Use the version of RFD RL78 Type 01 listed in Table 1-4.

« Renesas Flash Driver (RFD)
Table 1-4 shows the Renesas Flash Driver (RFD) used for EES RL78 Type 01.

Table 1-4 The Renesas Flash Driver (RFD) Used for EES RL78 Type 01

Package Manufacturer

Package Version

RFD RL78 Type 01

Renesas Electronics

Ver 1.20

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 12 of 136

EES RL78 Type 01 1. Overview

1.5 Points for Caution

EEPROM emulation is achieved by using a feature for manipulating the RL78/G2x microcontroller data flash
memory. Therefore, it is necessary to note the following.

(1) All EES code and constants must be placed in the same 64 KB flash block such that EES code and
constants do not extend across a 64-KB boundary. (It dependent on each compiler.)

(2) The EES must be initialized by the R_EES_Init function before any EES function is executed.
(3) The data flash memory cannot be read during data flash memory operation by the EES.

(4) Iltis not allowed to call any RFD function during a command execution of the EES.

(5) Itis not allowed to call any RFD control functions for EES directly from other than the EES.

(6) Do not execute STOP mode or HALT mode processing while the EEPROM emulation is being used. If it
is necessary to execute STOP mode or HALT mode processing, be sure to execute all of the
processing up to and including the R_EES_Close function to finish EEPROM emulation.

(7) The watchdog timer does not stop during execution of the EES.
(8) Do not destroy the request structure (st_ees_request_t) during command execution.

(9) Initialize the argument (RAM) that is used by the EEPROM emulation software function. When not
initialized, a RAM parity error is detected and the RL78/G2x microcontroller might be reset. For a RAM
parity error, refer to “User's Manual: Hardware” of a target device.

(10) All members of the request structure (st_ees_request_t) must be initialized once before a EES
command is executed. If any unused member exists in the request structure (st_ees request t), seta
desired value for the member. If any member is not initialized, the RL78/G2x microcontroller may be
reset due to a RAM parity error. For details, refer to “User’'s Manual: Hardware” of a target device.

(11) The EES does not support multitask execution. Do not execute the EES functions during interrupt

processing.

(12) After the R_EES_Close function have been executed, the requested command and ongoing command
stop and cannot be resumed. Before calling the R_EES_Close function, finish all ongoing commands.

(13) Do not operate the code flash memory by RFD RL78 Type 01 while the EEPROM emulation is
executed. Before the code flash memory is operated, be sure to execute a "R_EES_Close function”
necessary in order to finish the EEPROM emulation. When using EEPROM emulation after executing
the code flash memory operations using the RFD RL78 Type 01, it is necessary to start processing from
the initializing function (the R_EES_ Init function).

(14) Before starting the EEPROM emulation, be sure to start up the high-speed on-chip oscillator first. The
high-speed on-chip oscillator must also be activated when using the external clock.

R20UT5008EJ0120 Rev.1.20 NS Page 13 of 136
Sep.28.23 RENES

EES RL78 Type 01 1. Overview

(15) No checksum is added to user data. If a checksum is needed, add it to user data and check through the

user program.
(16) Do not operate the data flash control register (DFLCTL) during execution of the EES.

(17) To use the data flash memory for EEPROM emulation, it is necessary to execute the
R_EES_ENUM_CMD_FORMAT command upon first starting up to initialize the data flash memory and
make it usable as EES blocks.

(18) In order to use the EES, it is recommended to set at least 3 blocks in the EES block (virtual block).

(19) Do not destroy the EES blocks (virtual block) by the user program operating the data flash memory
using the RFD from other than the EES.

(20) EES descriptor is changed, the EEPROM emulation can no longer be executed. In that case, the EES
pool must be formatted by the R EES ENUM_CMD_FORMAT command in addition to initialization of
EES. When adding data, however, the EEPROM emulation can be continuously executed.

(21) About an operating frequency of RL78/G2x microcontroller and an operating frequency value set by the
initializing function (R_EES_Init), be aware of the following points:
- When using a frequency lower than 4 MHz as an operating frequency of RL78/G2x microcontroller,
only 1 MHz, 2 MHz and 3 MHz can be used (frequencies other than integer values like a 1.5 MHz
cannot be used). Also, set an integer value 1, 2, or 3 to the operating frequency value set by the
initializing function.
- When using a frequency of 4 MHz or higher N°*® as an operating frequency of RL78/G2x
microcontroller, a certain frequency can be used as an operating frequency of RL78/G2x
microcontroller.

- This operating frequency is not the frequency of the high-speed on-chip oscillator.

Note: For a maximum frequency, refer to “User’'s Manual: Hardware” of a target device.

R20UT5008EJ0120 Rev.1.20 NS Page 14 of 136
Sep.28.23 RENES

EES RL78 Type 01

1. Overview

1.6 C Compiler Definitions

The definitions of the target compiler written in the header file (r_ees_compiler.h) for EES RL78 Type 01 are
shown below.

The definitions differ between compilers. The "r_ ees_compiler.h" file is used to identify the current compiler
and the definitions for the target compiler are used.

« Definition of CC-RL compiler :

" CCRL__"is defined.

#define COMPILER_CC (1
« Definition of IAR compiler(V2, V3, V4) :

" _IAR_SYSTEMS_ICC__"is defined.

#define COMPILER_IAR (2)
« Definition of LLVM compiler :

" llvm__"is defined.

#define EES_COMPILER_LLVM (3)

< Descriptions in the r_ees_compiler.h file >

/* Compiler definition */

#define EES_COMPILER_CC)
#define EES_COMPILER_IAR (2)
#define EES_COMPILER_LLVM (3)

#if defined (__Illvm__)

#define EES_COMPILER EES_COMPILER_LLVM

#elif defined (__CCRL__)

#define EES_COMPILER EES_COMPILER_CC
#elif defined (__IAR_SYSTEMS_ICC_)

#define EES_COMPILER EES_COMPILER_IAR
#else

/* Unknown compiler error */

#error "Non-supported compiler."
#endif

/* Compiler dependent definition */

#if (EES_COMPILER_CC == EES_COMPILER)
#define R_EES_FAR_FUNC

#elif (EES_COMPILER_IAR == EES_COMPILER)
#define R_EES_FAR_FUNC

#elif (EES_COMPILER_LLVM == EES_COMPILER)
#define R_EES_FAR_FUNC

#else
/* Unknown compiler error */
#error "Non-supported compiler."

#endif

__ far

_ far_func

_ far

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 15 of 136

EES RL78 Type 01 1. Overview

C Compiler Options
The contents of the C compiler option setup which normal operation can be checking are shown below.

- [CC-RL(CSH+)]
Major compile options:
-cpu=S3 -g -g_line -lang=c99

- [IAR(IAR Embedded Workbench)]

Major compile options:
--core s3 --calling_convention v2 --code_model far --data_model near -e -Ol --no_cse --no_unroll
--no_inline --no_code_motion --no_tbaa --no_cross_call --no_scheduling --no_clustering --debug

- [LLVM(e? studio)]

Major compile options:
-Og -ffunction-sections -fdata-sections -fdiagnostics-parseable-fixits -Wunused -Wuninitialized -Wall
-Wmissing-declarations -Wconversion -Wpointer-arith -Wshadow -Waggregate-return -g -mcpu=s3

R20UT5008EJ0120 Rev.1.20 NS Page 16 of 136
Sep.28.23 RENES

EES RL78 Type 01 2. System Configuration

2. System Configuration

21 System Configuration

The EES offers interface for accessing the data flash area(the EES pool) defined by the user. The API
functions provided by EES accesses the EES pool via the RFD control functions for EES, or RFD.

The arrows shown in the Figure 2-1 below indicate the flow of processing.

Code flash memory

User program

v 1

EES
Before using the EEPROM RFD control
T . RFD
Emulation, initialize the RFD. functions for EES
(R_EES_Initand R_EES_Open A A
functions) v v

Data flash memory
(EES pool)

Figure 2-1 System Configuration

2.2 EES Architecture

This chapter describes the EES architecture required for the user to rewrite data flash memory (the EES
pool) by using the EES.

2.21 EES Block

EES uses multiple blocks of the data flash memory as one virtual block. This area is called an EES block.
The size of a block of the data flash memory mounted in RL78/G2x is 256 bytes. When EES block size is set
to a 1K-byte, 4 blocks of the data flash memory are gathered, and EES handles as a 1K-byte's virtual block.
Moreover, when EES block size is set to a 2K-byte, 8 blocks of the data flash memory are gathered, and
EES is handled as a 2K-byte's virtual block.

Be sure to set the size of an EES block in consideration of the size and the total number of blocks of the data
flash memory mounted in the target device. Refer to "4.2 Initial Values to be Set by User" for the setting
method. The schematic diagram for the EES block 0 when 1 K-byte or 2 K-byte are set by EES block is
shown in "Figure 2-2 Schematic diagram of EES block 0".

Maximum number of blocks that can be set in the EES block of a product equipped with 8 Kbytes of data
flash memory:

When the EES block size is set to 1 K-byte , the maximum number of blocks is 8.

When the EES block size is set to 2 K-byte , the maximum number of blocks is 4.

R20UT5008EJ0120 Rev.1.20 NS Page 17 of 136
Sep.28.23 RENES

EES RL78 Type 01

2. System Configuration

Absolute path

When using 2 Kbytes
(256 bytes x 8 blocks)

Data flash memory

0xF1700 Block 7
Data flash memory

0xF 1600 Block 6
Data flash memory

0xF 1500 Block 5
When using 1 Kbyte Data ﬂ;shknlemory

Absolute path 256 bytes x 4 blocks 0xF 1400 oc
vep (259 by L - EES Block 0

Data flash memory Data flash memory

0xF1300 Block 3 0xF1300 Block 3
Data flash memory Data flash memory

0xF 1200 Block 2 OXF 1200 Block 2

>~EES Block 0

Data flash memory Data flash memory

0xF1100 Block 1 0xF1100 Block 1
Data flash memory Data flash memory

0xF1000 Block 0) 0XxF1000 Block 0

Figure 2-2 Schematic diagram of EES block 0
222 EES Pool

The EES pool is a user-defined data flash area that is accessible by the EES. The user program can access
the data flash only by using this EES pool in the data flash via the RFD control functions for EES and the
EES. The EES pool size must be specified with the number of size in the data flash of the target device. For
the procedure to specify the number of blocks, see section 4.2 Initial Values to be Set by User.

Figure 2-3 shows an example of pool configuration for a device with 8 Kbytes data flash memory.

Data flash memory

N
-
Physical | |Physical| |Physical| |Physical| |Physical| |Physical| |Physical| |Physical

block block block block block block block block
0~3 4~7 8~11 12~15 16~19 20~23 24~27 28~31

|

|

| EES pool
EES EES EES EES EES EES EES EES
block block block block block block block block

0 1 2 3 4 5 6

Figure 2-3 EES pool configuration example (EES block size: 1 Kbyte)

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 18 of 136

EES RL78 Type 01

2. System Configuration

2.3 File Structure

2.3.1 Folder Structure

Figure 2-4 shows the folder structure of EES RL78 Type 01.

EESRL7ETO1
include

==

sample
common
include
SOUrCe
ees
RL78 G23
EE5

source
==
LISErAWN

include

: : Folders of this product

EES RL78 Type 01
include files

Sample programs

EES RL78 Type 01
program source files

EES RL78 Type 01
user-own files

Figure 2-4 Folder Structure of EES RL78 Type 01

Note: Figure 2-4 shows an example of using RL78/G23. The installed “sample” folder contains a folder for
each device group (e.g. RL78_G23, RL78_G24). Refer to “6.1.1 Folder Structure” for the sample folder for
each device group.

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS

Page 19 of 136

EES RL78 Type 01 2. System Configuration

2.3.2 List of Files
2.3.2.1 List of Source Files
Table 2-1 shows the program source files in the “source\ees\” folder.

Table 2-1 Program Source Files in the “source\ees\” Folder

No. Source File Name Description

1 r_ees_api.c This file contains the API functions for EEPROM
emulation control.

2 r_ees_exrfd_api.c This file contains the API functions RFD control functions
for EES

3 r_ees_sub_api.c This file contains API functions that are used as internal

functions for EEPROM emulation control.

Table 2-2 shows the program source file in the “userown\” folder.

Table 2-2 Program Source File in the “userown\” Folder

No. Source File Name Description

1 r_ees_descriptor.c EES descriptor source file.

2.3.2.2 Header File List of Header Files
Table 2-3 shows the program header files in the “include\” folder.

Table 2-3 Program Header Files in the “include\” Folder

No. Header File Name Description

1 r_ees_api.h This file defines the prototypes used in EEPROM control
functions.

2 r_ees_exrfd_api.h This file defines the prototypes used in RFD control
functions for EES.

3 r_ees_sub_api.h This file defines the prototypes for internal functions
used in EEPROM emulation control functions.

Table 2-4 shows the program header files in the “userown\include\” folder.

Table 2-4 Program Header Files in the “userown\include\” Folder

No. Header File Name Description

1 r_ees_descriptor.h EES descriptor header file.

2 r_ees_user_types.h This file defines the types of user data used in EES.
R20UT5008EJ0120 Rev.1.20 RENESAS Page 20 of 136

Sep.28.23

EES RL78 Type 01 2. System Configuration

Table 2-5 shows the program header files in the “include\ees” folder.

Table 2-5 Program Header Files in the “include\ees” Folder

No. Header File Name Description

1 r_ees.h Common header file.

2 r_ees_compiler.h This file defines the compiler-dependent macros used in
EES RL78 Type 01.

3 r_ees_defines.h This file describes the definitions that differ between
compilers used in EES RL78 Type 01.

4 r_ees_device.h This file defines the hardware-specific macros used in
EES RL78 Type 01.

5 r_ees_memmap.h This file defines macros to describe sections used in
EES RL78 Type 01.

6 r_ees_types.h This file defines the types of variables used in EES RL78
Type 01.

7 r_typedefs.h This file defines the types of data used in EES RL78
Type 01.

R20UT5008EJ0120 Rev.1.20 RENESAS Page 21 of 136

Sep.28.23

EES RL78 Type 01

2. System Configuration

2.4

2.41

Resources of RL78/G2x

Memory Map

Table 2-6 shows the memory map (code flash memory: CF[1 block = 2 Kbytes], data flash memory: DF
[1 block = 256 bytes], and RAM) of the RL78/G23, RL78/G22 and RL78/G24.

Table 2-6 Memory Map (ROM, Data Flash, and RAM)

RL78 Device Code Flash Memory: CF RAM
G23 | RTF100GxF (x=A,B,C,E F, G, J, L) ?c?olgggtﬁ?o 17FFFH) zgc};%)gasto FFEFFH)
R7F100GxG (x=A,B, C,E.F, G, J, L, M, P) fooggﬁfi 1FFFFH) ngI;%}glisto FFEFFH)
R7F100GxH (x=A. B, C,E,F, G, J,L, M, P) fooggﬁfi 2FFFFH) (ZgAKF%gzsto FFEFFH)
R7F100Gx) (x=A,B,C,E.F. G, J LLM,P, S) (szo'égﬁfi 3FFFFH) (Zifg};%tssto FFEFFH)
R7F100GxK (x=F, G, J, L, M, P, S) f’ﬁfo’égﬁ?i SFFFFH) ?ﬁ?ﬁ%ﬁio FFEFFH)
R7F100GxL (x =F, G, J. L, M, P, §) féfo'égﬁfi 7FFFFH) ?%Iﬁg)(l)tl-elio FFEFFH)
RTF100GN (x=F, G, J,L, M, P, S) foo'égﬁfi BFFFFH) ?fSI;g}(;tl-elsto FFEFFH)
Sp—
G22 | R7F102GxC(x=4,6,7,8 A.B,C.EF, G) ?gogggt:?o 07FFFH) ?F}é%g; to FFEFFH)
R7TF102GxE (x=4,6,7,8,A.B,C.E.F, G) ?;ogggtﬁ?o OFFFFH) ?FE%SZ to FFEFFH)
o —
G24 | R7F101GXE (x=6,7,8, A B.EF.G.J.L) ?5‘0'3335’?0 OFFFFH) ZFZCKF%%ﬁStO FFEFFH)
R7F101GxG (x=6,7,8,AB,E,F,G J,L) fooggﬁfi (FEFFH) chﬁ%%ﬁsto FFEFFH)
o iy 7

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 22 of 136

EES RL78 Type 01

2. System Configuration

2.4.2 Allocation of Blocks

Figure 2-5, and Figure 2-6 shows the allocation of blocks in code flash memory (CF), and data flash memory
(DF). Refer to the user's manual of a target device for allocation of blocks for other devices.

(1) R7F100GxN (Code flash memory: 768 Kbytes)

BFFFFH

BF800H
BF7FFH

BFOOOH
BEFFFH

BE80OOH

BE7FFH

01000H

00FFFH

00800H
007FFH

00000H

CF: Block 17FH
(2 Kbytes)

CF: Block 17EH
(2 Kbytes)

CF: Block 17DH
(2 Kbytes)

CF: Block 001H
(2 Kbytes)

CF: Block 000H
(2 Kbytes)

Figure 2-5 Blocks in the Code Flash Memory

(2) R7TF100GxF (Code flash memory: 96 Kbytes)

17FFFH

17800H
177FFH
01000H
00FFFH

00800H
007FFH

00000H

CF: Block 02FH
(2 Kbytes)

CF: Block 001H
(2 Kbytes)

CF: Block 000H
(2 Kbytes)

(1) All RL78/G23 devices (Data flash memory: 8 Kbytes)

F2FFFH
F2FOOH

F1200H
F11FFH
F1100H
F10FFH
F1000H

Figure 2-6 Blocks in the Data Flash Memory

DF: Block 01FH
(256 bytes)

DF: Block 001H
(256 bytes)

DF: Block 000H
(256 bytes)

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 23 of 136

EES RL78 Type 01 2. System Configuration

243 Flash Operation Mode

(1) The range of operating frequency in each flash operation mode of RL78/G23.

Table 2-7 shows the range of operating frequency in each flash operation mode of RL78/G23.

Table 2-7 Operating Frequency Ranges for Individual Flash Operation Modes and Power Supply
Voltages

Power Supply Voltage (Vop)

Flash Operation Mode

Operating Frequency

1.8V <Vop<55V

HS (high-speed main) mode

1 MHz to 32 MHz

LS (low-speed main) mode

1 MHz to 24 MHz

1.6V<Vop<18V

HS (high-speed main) mode

1, or2 MHz

1,or 2 MHz

LS (low-speed main) mode

Note: The flash memory cannot be reprogrammed in the LP (low-power main) mode.

(2) The range of operating frequency in each flash operation mode of RL78/G22.

Table 2-8 shows the range of operating frequency in each flash operation mode of RL78/G22.

Table 2-8 Operating Frequency Ranges for Individual Flash Operation Modes and Power Supply
Voltages

Power Supply Voltage (Vop) Flash Operation Mode Operating Frequency

1 MHz to 32 MHz
1 MHz to 24 MHz

1.8V <Vop<55V HS (high-speed main) mode

LS (low-speed main) mode

Note: The flash memory cannot be reprogrammed in the LP (low-power main) mode.

(3) The range of operating frequency in each flash operation mode of RL78/G24.

Table 2-9 shows the range of operating frequency in each flash operation mode of RL78/G24.

Table 2-9 Operating Frequency Ranges for Individual Flash Operation Modes and Power Supply
Voltages

Power Supply Voltage (Vop) Flash Operation Mode Operating Frequency

HS (high-speed main) mode
(with prefetching on)
HS (high-speed main) mode
(with prefetching off)

24V<Vop<55V 48 MHz

1.8V<Vpp<55V 1 MHz to 32 MHz

1 MHz to 24 MHz

LS (low-speed main) mode

Notes 1: The flash memory cannot be reprogrammed in the LP (low-power main) mode.

2: It is necessary to enable a prefetch buffer peculiar to RL78/G24 in the mode of "HS (high-
speed main) mode (with prefetching on).

R20UT5008EJ0120 Rev.1.20 Page 24 of 136

Sop.26.23 LENESAS

EES RL78 Type 01

2. System Configuration

25 Resources Used in EES RL78 Type 01

251 Sections Used in EES RL78 Type 01

Table 2-10 shows the sections used for EES and allocations of the sections.

Table 2-10 Sections Used in EES

Section Name Description Allocation
EES_CODE Program section of API functions for EES control ROM
Constant variables section for EES initialized
EES_CNST variables. ROM
EES VAR Variables section for EES control RAM
SMP_EES Program section of sample functions for EES control ROM
SMP_VAR Variables section of sample functions for EES control RAM
2.5.2 Software Resources
Table 2-11 shows software resources (Reference value).
Table 2-11 Software ResourcesN°®s'.2 (Reference value)
Size (Byte)
Item
CC-RL IAR LLVM
Stack 44 48 44
Code sizeNete3 4624 5177 5830

Notes 1: These values are when using the compiler options described in “1.6 C Compiler Definitions”.

2: Does not include the stack and code size of the sample program.
3: Does not include code size of the RFD RL78 Type 01.

R20UT5008EJ0120 Rev.1.20
Sep.28.23

LENESAS

Page 25 of 136

EES RL78 Type 01 3. EEPROM Emulation
3. EEPROM Emulation

3.1 Specifications of EEPROM Emulation

By calling the EES functions provided by the EES RL78 Type 01 from a user-created program, use is
possible without the awareness of data flash memory operations.

For the EES RL78 Type 01, an one-bye identifier (data ID: 1 to 254) is assigned by the user for each data
item, and reading and writing using any unit from 1 to 255 bytes are possible on an assigned identifier basis.
(The EES can handle up to 254 identifiers.)

Also, EES blocks (virtual block) for storing data use more than three blocks of area (recommended) N,
These blocks are called EES blocks. Data written by EEPROM emulation is divided into reference data and
user-specified data, and the reference data is written to the target blocks from the lower block address, while

the user data is written from the higher block address.

Note: At least two blocks are necessary for EEPROM emulation. When two blocks are specified, if a write
error occurs even once, only reading of normally written data is possible but writing is no longer
possible. After that, the two target blocks must be formatted when the EES is used to write data.
Written data is erased completely. Since a contingency (such as voltage drop) may occur in the system,

we recommend that you specify at least three blocks.

3.2 Outline of Functions

The EES provides basic read/write functions having the following features.

The value to set for the size of the EES block:
RL78/G23 and RL78/G24: 1024 or 2048 bytes
RL78/G22: 512 bytes

- Up to 254 data items settable

- A data size of 1 to 255 bytes settable

- Supporting the background operation (BGO)

- Memory consumption of data for EES management (Block header, Separator):
10 bytes per EES block
- Memory consumption of reference data: 3 bytes per EES block write data)
- Restoration by R_EES_ENUM_CMD_REFRESH when execution is stopped by a CPU reset while
R_EES_ENUM_CMD_WRITE or R_EES_ENUM_CMD_REFRESH is running

- Block rotation (averaging data flash use frequency)

Table 3-1 shows the range of settings when the EES functions are used.

R20UT5008EJ0120 Rev.1.20 NS Page 26 of 136
Sep.28.23 RENES

EES RL78 Type 01 3. EEPROM Emulation

Table 3-1 Range of Settings when the EES Functions are Used

Item Range

RL78/G22: 512 (bytes)
RL78/G23 and RL78/G24: 1024 or 2048 (bytes)

EES block size

User data length 1to 255
Amount of stored user data Nete ! 1 to 254
Data ID range 1 to 254

(The numbers assigned are from 1 to 254 in the order of
registration, and the selection of settings is not possible.)

Number of EES blocks Note 2 3 to 255

The EES block size is set to 512 bytes: 502 / 2 (bytes) or less

Recommended user data sizeN°®®" | The EES block size is set to 1024 bytes: 1014 / 2 (bytes) or less

The EES block size is set to 2048 bytes. 2038 / 2 (bytes) or less

Notes: 1. The total size of user data must be within 1/2 of each block when all user data are written to an
EES block. Therefore, the range used for the number of stored user data items differs depending
on the size of the stored user data. It is also necessary to consider the size of the reference data
provided for each data item for management use when determining the total size. For details about
the number of stored user data items and total size, see "4.1 Number of Stored User Data ltems
and Total User Data Size".

2. EES blocks cannot be set more than maximum number of blocks of on-board data flash
memory.

3.3 EES Pool

This chapter describes the EES architecture required for the user to rewrite data flash memory (the EES
pool) by using the EES.

3.3.1 EES Pool State

Each block has a state which indicates the current usage of the block. Table 3-2 shows States of the EES
Blocks.

Table 3-2 States of the EES Blocks

State Description

Active | Only a single EES block is active at a time to store defined data. The active block
circulates in data flash blocks allocated in the EES pool.

Invalid No data is stored in invalid blocks. EES blocks are marked as invalid by the EES or

become invalid in the case of erasure blocks.

Excluded | If functional operation failed and possibility of a data flash failure is clarified, the EES
excludes the relevant block and the block is no longer used for EEPROM emulation.

When no writable area is remaining in the active block (EES block 1 in the example) and data can no longer
be stored (failure in write command), a new active block is selected in a cyclic manner and the current valid
data set is copied to this new active block. This process is referred to as refresh. After the
R_EES_ENUM_CMD_REFRESH command is executed, the previous active block becomes invalid and only
a single active block exists. Excluded blocks (like block 7 in the example) are ignored during this process
and not considered as candidates for the selection of the next active block.

Figure 3-1 shows an example of pool states (EES block size is set to 1 Kbyte).

R20UT5008EJ0120 Rev.1.20 NS Page 27 of 136
Sep.28.23 RENES

EES RL78 Type 01

3. EEPROM Emulation

Data flash memory
N

s N
Physical | | Physical | | Physical | | Physical | | Physical | |Physical | | Physical | |Physical
block block block block block block block block
0~3 4~7 8~11 12~15 16~19 20~23 24~27 28~31

| |
I EES pool I
EES EES EES EES EES EES EES EES
block block block block block block Block block
0 1 2 3 4 5 6 7

)
T T T O e

A

@ Active block

@ Invalid block

@ Excluded block

Figure 3-1 EES Pool States Example (The EES block size is set to 1 Kbyte)

The overall life cycle of a block in the EES pool is shown in Figure 3-2. During normal operation, the block
switches between active and invalid state. When an error occurs during an access to the EES block, the
error EES block is marked as excluded. This block will not enter the lifecycle again. However, the user can
try to restore the block by a format of the complete pool which also erases all existing data content.

Caution: An EES block is a virtual block. If at least 1 block of erase blocks (physical block of a 256-byte unit)

of the data flash memory included in an EES block cannot be used by failure, the EES block

including the erase block will be judged to be "Excluded block".

v

invalid

active J
block ——p» block ‘>

excluded
block

Figure 3-2 Life Cycle of an EES Block

R20UT5008EJ0120 Rev.1.20
Sep.28.23

LENESAS

Page 28 of 136

EES RL78 Type 01

3. EEPROM Emulation

The EES pool has the four states shown below.

Table 3-3 States of the EES Pool

State

Description

Pool operational

This is the usual case during EES operation. All commands are available and can
be executed.

Pool full

Free space for data write is insufficient in the active block in use. This state indicates
that a refresh needs to be executed.

Pool exhausted

No continuously usable EES block is left. (At least two blocks that are not excluded
are necessary for EES operations.)

Pool inconsistent

There is a mismatch in the pool state and the data structure in the EES block does
not match the user-set data structure. The EES block is in the undefined state (e.g.
no active block is present).

3.3.2 Structure of EES Block

The detailed block structure used by the EES is shown in . In general, an EES block is divided into three
utilized areas: the block header, the reference area, and the data area.

0xF1000 Block header

Toward the higher address
Reference area

Separator (erased 2 bytes)

Erased area
(All bytes OxFF)

Data area Toward the lower address

OxF13FF

Figure 3-3 EES Block Structure(1 Kbyte)

Table 3-4 Configuration of Each EES Block

Name

Description

Block header

The block header contains all block status information needed for the block
management within the EES-pool. It has a fixed size of 8 bytes.

Reference area

The reference area contains reference data which are required for the management
of data. When data are written, this area expands in the direction of higher
addresses.

The data area contains user data. When data are written, this area expands in the

Data area direction of lower addresses.
R20UT5008EJ0120 Rev.1.20 RENESAS Page 29 of 136

Sep.28.23

EES RL78 Type 01 3. EEPROM Emulation

Between reference area and data area, there is an erased area. With each EES data update (i.e. the data is
written), this area is reduced successively. However, at least 2 bytes of space always remain between
reference area and data area for management and separation of these areas. This is indicated by the
separator in Figure 3-3.

The EES block header is detailed in section "3.3.3 EES Block Header", while the structure of data stored in
the reference and data area are described in section "3.3.4 Structure of Stored Data".

3.33 EES Block Header

The structure of the block header is depicted in Figure 3-4. It is composed of 8 bytes, three of which are
reserved for the system.

relative byte
index within
block

0x0000 A N
0x0001 B OxFF- N
0x0002 B’ 0x00
0x0003 | 0x00
0x0004 X 0x00
0x0005 - Reserved
0x0006 - Reserved
0x0007 - Reserved

Figure 3-4 Structure of EES Block Header

The block status flags start at the beginning of the block and include the A flag, B flag, B’ flag, | flag, and X
flag, each of which is 1 byte, for a total of 5 bytes of data. The combination of flags indicates the EES block

status.
Figure 3-4 shows the placement status of flags, and Table 3-5 shows the combination status of flags.

R20UT5008EJ0120 Rev.1.20 NS Page 30 of 136
Sep.28.23 RENES

EES RL78 Type 01 3. EEPROM Emulation

Table 3-5 Overviews of Block Status Flags

Block Status Flag

- State Description
AFlag | B Flag B’ Flag | | Flag X Flag

Currently used block
0x01 0xFE 0x00 OxFF OxFF After the R_ EES ENUM_CMD_REFRESH command is
executed, the A flag of a new active block is set to 0x02.

Currently used block
0x02 OxFD 0x00 OxFF OxFF Active After the R_EES _ENUM_CMD_REFRESH command is
executed, the A flag of a new active block is set to 0x03.

Currently used block
0x03 0xFC 0x00 OxFF OxFF After the R_EES_ENUM_CMD_REFRESH command is
executed, the A flag of a new active block is set to 0x01.

Currently used block. However, new data cannot be
0x01 OxFE OxFF OxFF added because the writing for B' flag is not completed.
(Read is possible.)

After executing the R_EES_ENUM_CMD_REFRESH

0x02 OxFD 0x01 - OXEF OXEF Active command, the A flag of a new active block is set in the
OxFE order of 0x01, 0x02, 0x03, 0x01,....

0x03 0xFC OxFF OxFF

- OXFF | OXFF | OXFF

other Invalid Invalid block
- than OxFF
OxFF
other
- - than Excluded | Excluded block
OxFF

3.34 Structure of Stored Data

The structure of stored data when user data is written to an EES block is shown in the figure below. A data is
composed of three parts: the start-of-record (SoR) field and the end-of-record (EoR and EpR’) field and the
data field. The EES descriptor table can be used to set data for use in the EES. Each data is referred to by
an identification number (ID) and can have a size between 1 and 255 bytes. (The exact specification of the
format of the EES descriptor can be found in section "4.2 Initial Values to be Set by User".)

Each time data is written, stored data increase in the EES block and multiple units of stored data exist in the
EES block, but only the most recent stored data is referenced.

SoR,EoR and EoR'’ build up the so-called reference data which is required for the management of the data.
The reference data and user data values are stored in different sections of the active block, namely the
reference area and the data area, respectively. Figure 3-6 shows the overview of the entire structure of

stored data.

R20UT5008EJ0120 Rev.1.20 NS Page 31 of 136
Sep.28.23 RENES

EES RL78 Type 01 3. EEPROM Emulation

SoR ID
Reference data in EES block
EoR OxFF - ID reference area
EoR’ 0x00
© " 0x0000
Data field in EES block
Data data area
Datasize - 1

Figure 3-5 Structure of Stored Data

Table 3-6 Description of Each Field of Data Area

Name Description
SoR field The 1 byte SoR field contains the ID of data. This field indicates the start of write
(Start of Record) | hocessing. Data IDs 0x00 and OxFF are not used to avoid patterns of erased cells.
EoR field The 1 byte EoR field contains a OxFF - data ID value.

(End of Record) | This field indicates successful end of write processing. If writing does not end
normally due to a device reset or other reasons, the corresponding stored data is
ignored by the EES.

EoR’ field The 1 byte EoR' field contains the completion of the write process to the EoR field.
(End of Record’) | This field is written to 0x00 after the EoR field has been written.

- When the value is between 0x01 - OxFE, the stored data is valid, but the writing
has not been completed. Therefore, the block is treated as a block to which data
cannot be added.

- When the value is OxFF, EES judges with the execution result of the writing for the
EoR field not having been a normal end.

Data field The data field contains the user data. The size of user data is 1 to 255 bytes. When

data of 2 bytes or more is stored, the smallest address of the data is allocated to the
smallest address of the data field (as shown in Figure 3-6).

Data is written to the EES block in the order of SoR -> data field -> EoR -> EoR'. If the value of the EoR field

is not written correctly, the immediately previous data becomes valid.

Notes: 1. The total size of the reference data consumed by each stored data is 3 bytes. This should be
considered when evaluating the free space in a block before writing the data through the
R_EES_GetSpace function.

2. No checksum is added to user data. If a checksum is needed, add it to user data and check

through the user program.

3.3.5 EES Block Overview

Figure 3-6 shows an example of an EES block that contains multiple units of stored data:
* Data ID 0x01 with size = 0x04
* Data ID 0x02 with size = 0x01
» Data ID 0x03 is defined but not written here.
» Data ID 0x04 with size = 0x02

R20UT5008EJ0120 Rev.1.20 NS Page 32 of 136
Sep.28.23 RENES

EES RL78 Type 01

3. EEPROM Emulation

The data have been written in the sequence ID 0x01 -> ID 0x04 -> ID 0x02.

In this example, the data with ID 0x03 has not been written yet.

Relative byte
index within
block
0x0000
0x0001
0x0002
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008
0x0009
0x000A
0x000B
0x000C
0x000D
0x000E
0x000F
0x0010
0x0011
0x0012

Ox03F8
0x03F9
Ox03FA
0x03FB
0x03FC
0x03FD
O0x03FE
Ox03FF

A =0x02

B =0xFD

B’ = 0x00

| = OXFF

X =0xFF

Reserved

Reserved

Reserved

SoR > ID = 0x01

EoR - ~ID = OxFE

EoR’ - ~ID = 0x00

SoR > ID = 0x04

EoR > ~ID = 0xFB

EoR’ - ~ID = 0x00

SoR - ID = 0x02

EoR > ~ID = 0xFD

EoR’ - ~ID = 0x00

Separator (erased 2 bytes)

Erased area

(all bytes OXFF)

DATA (ID = 0x02) [0]

()
DATA (ID = 0x04) [0]
DATA (ID = 0x04) [1]

DATA (ID =0x01) [0]

DATA (ID = 0x01) [1]

DATA (ID = 0x01) [2]

DATA (ID = 0x01) [3]

> Block header

> Reference
area

> Data area

/

Figure 3-6 Example of an Active EES Block

R20UT5008EJ0120 Rev.1.20
Sep.28.23

LENESAS

Page 33 of 136

EES RL78 Type 01 4. Using EEPROM Emulation
4. Using EEPROM Emulation

EEPROM emulation can store a maximum of 254 data items each consisting of 1 to 255 bytes in the flash
memory by using three or more blocks (recommended) of flash memory.

EEPROM emulation can be executed by incorporating the EES into a user-created program and executing
that program.

4.1 Number of Stored User Data Items and Total User Data Size

The total size of user data that can be used in the EEPROM emulation is limited. The size required for writing all user
data to an EES block must be within 1/2 of the block. Therefore, the number of stored data items that can be used
differs depending on the size of user data that is actually stored. The following shows how to calculate the size that
can be used when actually writing user data, as well as the total user data size.

[Maximum usable size of one block that can be used to write the user data]

Size required for EEPROM emulation block management: 8 bytes
Free space necessary as termination information (separator): 2 bytes

- EES Block size: 1024 bytes
EES block size: 256 bytes * 4 = 1024 bytes
Maximum usable size of one block = 1024 bytes - (8 bytes + 2 bytes) = 1014 bytes

- EES Block size: 2048 bytes
EES block size: 256 bytes * 8 = 2048 bytes
Maximum usable size of one block = 2048 bytes - (8 bytes + 2 bytes) = 2038 bytes

[Calculating the size for writing each user data item] Not©
Size of each written user data item = data size + reference data size (3 bytes)
Note: For details, see 3.3.4 Structure of Stored Data.
[Calculating the basic total user data size]
Basic total size = (user data 1 + 3) + (user data 2 + 3) ... + (user data n + 3)
[Maximum size and recommended size]

Data must be held in one block. Therefore, the maximum size is the maximum usable size of one block but the
following relational expression should be met. To enable all data to be updated at least once, we recommend that
the data be within the half size of the maximum usable size of one block.

Maximum size: Assumed that the largest data can be updated once after all data have been written.
Recommended size : Assumed that all data can be updated once after all data have been written.

- EES Block size: 1024 bytes
Maximum size = the basic total user data size + maximum data size + 2 < 1014
Recommended size = 1014 / 2 = 507 bytes or less

- EES Block size: 2048 bytes
Maximum size = the basic total user data size + maximum data size + 2 <2038
Recommended size = 1038 /2 = 1019 bytes or less

R20UT5008EJ0120 Rev.1.20 NS Page 34 of 136
Sep.28.23 RENES

EES RL78 Type 01 4. Using EEPROM Emulation

4.2 Initial Values to be Set by User

As the initial values for the EES, be sure to set the items indicated below. In addition, before executing the EES, be
sure to execute the high-speed on-chip oscillator. The high-speed on-chip oscillator must also be activated when
using the external clock.

- Number of stored data items, and data size of the identifier (data ID)
< EEPROM emulation soft wear user include file (r_ees_descriptor.h) >Notes 2.3

#define R_EES_EXRFD_VALUE_U16_PHYSICAL_BLOCK_SIZE (256u)
: (1) The size of one block of data flash memory
(Physical block size).
#define R_EES_EXRFD_VALUE_UO08_PHYSICAL_BLOCKS_PER_VIRTUAL_BLOCK (4u)
: (2) The number of data flash memory blocks
(Number of physical blocks) to set in the EES
block(Per virtual block). Notes 1
#define R_EES_EXRFD_VALUE_U08 POOL_VIRTUAL_BLOCKS (4u)
: (3) EES pool size (Number of virtual blocks)
#define R_EES VALUE _U08 VAR NO (8u) :(4) Number of stored data items

Notes 1: The number of data flash memory blocks to set in the EES block (Per virtual block):
RL78/G22: 2u
RL78/G23 and RL78/G24: 4u or 8u

< EEPROM emulation software user data definition file (r_ees_user_types.h) > Notes 3

typedef uint8_t type A[2]; : (5) Data size definition of each data identifier
typedef uint8_t type_ B[3]: (data ID).

typedef uint8_t type_ CI[4];

typedef uint8_t type DI[5];

typedef uint8_t type_E[6];

typedef uint8 t type F[10];

typedef wuint8_t type X[20];

typedef uint8 t type Z[255];

R20UT5008EJ0120 Rev.1.20 NS Page 35 of 136
Sep.28.23 RENES

EES RL78 Type 01 4. Using EEPROM Emulation

< EEPROM emulation software user program file (r_ees_descriptor.c)> Note3

__far const uint8_t g_ar_u08_ees_descriptor : (6) Data size of each data identifier
[R_EES_VALUE_U08_VAR_NO + 2u] = (data ID).
{
(uint8_t)(R_EES_VAR_NO), /* variable count 1\
(uint8_t)(sizeof(type_A)), /* id=1 A\
(uint8_t)(sizeof(type_B)), /*id=2 A\
(uint8_t)(sizeof(type_C)), /*id=3 1\
(uint8_t)(sizeof(type_D)), /* id=4 A
(uint8_t)(sizeof(type_E)), /*id=5 A\
(uint8_t)(sizeof(type_F)), /* id=6 o\
(uint8_t)(sizeof(type_X)), [*id=7 A\
(uint8_t)(sizeof(type_2)), /*id=8 o\
(uint8_t)(0x00), [* zero terminator ¥/ \
X

Notes 2: The macros that are being used are parameters which are common to the whole EES, so any
changes should only be to numerical values.
3: After initializing the EEPROM emulation blocks (after executing the
R_EES_ENUM_CMD_FORMAT command), do not change the values. If the values are
changed, reinitialize the EES blocks (by executing the R_EES_ENUM_CMD_FORMAT

command).

(1) The size of one block of data flash memory (Physical block size).

Set the size of one block of data flash memory installed (mounted) in the target device.

(2) The number of data flash memory blocks (Number of physical blocks) to set in the EES block.
Sets the number of data flash memory blocks to use for the EES block.

(3) EES pool size. Nt
The number of blocks in the data flash memory of the target device must be specified as the number of
blocks in the EES pool.
Note: Specify 3 (3 blocks) or a greater value (recommended).

(4) Number of stored data items
Specify the number of data items to be used in the EEPROM emulation. A value of 1 to 254 can be set.

(5) Data size definition of each data identifier (data ID).
Defines the data type name for the byte size of each user data. The EES descriptor table reflects the

byte size of each user data.

R20UT5008EJ0120 Rev.1.20 NS Page 36 of 136
Sep.28.23 RENES

EES RL78 Type 01

4. Using EEPROM Emulation

(6) Data size of each data identifier (data ID)

A table to define the data size of each identifier is provided below. This is called an EES descriptor table.

Data to be written must be registered in the EES descriptor table in advance.

__far const uint8_t g_ar_u08_ees_descriptor [Number of stored data items + 2]

R_EES_VALUE_U08_VAR_NO

Byte size of data ID1

Byte size of data ID2

Byte size of data ID3

Byte size of data ID4

Byte size of data ID5

Byte size of data ID6

Byte size of data ID7

Byte size of data ID8

0x00

Figure 4-1 EES Descriptor Table (When there are eight different data items)

- R_EES_VALUE_U08_VAR_NO

User-specified number of data items used in the EES

- Byte size of data IDx
User-specified size of user data

* Termination area (0x00)

(in bytes)

Specify 0 as the termination information.

R20UT5008EJ0120 Rev.1.20
Sep.28.23

LENESAS

Page 37 of 136

EES RL78 Type 01 5. User Interface

5. User Interface

51 Request Structure (st_ees_request_t) Settings

Basic operations such as reading from and writing to the data flash memory are performed by a single
function. The function transfers commands and data ID to the EES via the request structure
(st_ees_request_t). Furthermore, the EES state and error information are acquired via the request structure
(st_ees_request_t).

In subsequent sections, write access to the request structure (st_ees_request_t) from the user is called user
write access, and read access to it from the user is called user read access.

User Program

np_u08 address

u08_identifier

e_command

e_status

——» User write access

"""" » User read access

Figure 5-1 Request Structure (st_ees_request_t)

The request structure (st_ees_request_t) is defined in the r_ees_types.h file. It should not be changed by the
user.

[Definition of the request structure (st_ees_request_t)]

typedef struct st_ees_request

{
uint8 t near* np_u08 address;
uint8_t u08_identifier;
e _ees_command_t e_command;
e_ees_ret_status_t e_status;

} st_ees _request t;

R20UT5008EJ0120 Rev.1.20 NS Page 38 of 136
Sep.28.23 RENES

EES RL78 Type 01

5. User Interface

uint8_ t _ near*

np_u08 address

uint8 t u08_identifier

e ees command t e command

e _ees ret status_te status

Bit 0

Bit 15

Figure 5-2 Alignment of Variables of the Request Structure (st_ees_request t)

511 User Write Access

(1) np_u08_address

Specifies a pointer to the start address of the data buffer used for R_ EES ENUM_CMD_WRITE command

and R_EES_ENUM_CMD_READ command execution.

Associated command (macro name)

Setting

R_EES_ENUM_CMD_WRITE

Pointer to the start address of the data buffer. Note !

R_EES_ENUM_CMD_READ

Pointer to the start address of the data buffer. Note 2

Notes 1: Buffer which contains data written by the user
2: Buffer which contains data read from the data flash memory

(2) u08_identifier

Specify the data ID used for each command. For more information about how to do this, see the
description of the R_EES_Execute function in section "5.7 Specifications of APl Functions".

Associated command (macro name) Setting
R_EES_ENUM_CMD_WRITE ID of write data
R_EES_ENUM_CMD_READ ID of read data

(3) e_command
Commands to be set in the common executable function.
Associated command (macro name) Description

R_EES_ENUM_CMD_UNDEFINED

Undefined command
(Initial value: It is used only for initialization.)

R_EES_ENUM_CMD_STARTUP

Startup processing

R_EES_ENUM_CMD_WRITE

Write processing

R_EES_ENUM_CMD_READ

Read processing

R_EES_ENUM_CMD_REFRESH

Refresh processing

R_EES_ENUM_CMD_FORMAT

Format processing

R_EES_ENUM_CMD_SHUTDOWN

Shutdown processing

51.2 User Read Access

- e_status

EES status and error information. For information about the status and errors which might occur during

execution of the functions, see the description of the R_EES_Execute function in section "5.7

Specifications of API Functions"

R20UT5008EJ0120 Rev.1.20
Sep.28.23

LENESAS

Page 39 of 136

EES RL78 Type 01 5. User Interface

5.2 List of APl Functions and R_EES_Execute Function Commands for the EES
5.21 API Functions for the EES
Table 5-1 shows the API functions for EES RL78 Type 01.

Table 5-1 API Functions for EES RL78 Type 01

APl Name Overview

1 R_EES_Init Sets the frequency specified by the parameter in the flash memory
sequencer and initializes RFD RL78 Type 01.

2 R_EES_Open EEPROM emulation preparation processing.
This function makes the EEPROM emulation executable.

3 R_EES Close EEPROM emulation end processing.
This function makes the EEPROM emulation un-executable.

4 R_EES_Execute EEPROM emulation execution function.

Each type of processing for performing EEPROM emulation
operations is specified for this function as an argument in the
command format, and the processing is executed.

5 R_EES_Handler Continuous EEPROM emulation execution processing.

This function is used to check for the completion of processing while
allowing processing of EEPROM emulation specified by the
R_EES_ Execute function to continue.

6 R_EES_GetSpace Gets the free space of the active block.
R20UT5008EJ0120 Rev.1.20 RENESAS Page 40 of 136

Sep.28.23

EES RL78 Type 01 5. User Interface

5.2.2 Commands for R_EES_Execute Function
Table 5-2 shows commands for R_EES_Execute.

Table 5-2 List of Commands for R_EES_Execute.

Command Name Outline

1 R_EES_ENUM_CMD_STARTUP [Startup Processing]

This command checks the block status and sets the system to the
EEPROM emulation (data access) valid state (Full Access). If two active
blocks exist, the incorrect block is changed to an invalid block.

Be sure to execute this command before executing commands other
than the R_EES_ENUM_CMD_FORMAT command and make sure that
the command finishes normally.

2 R_EES_ ENUM_CMD_WRITE Notef [Write Processing]

This command writes the specified data to the EES blocks.

* The following arguments must be specified prior to execution.

- np_u08_ees_address: Specifies a pointer to the start address of the
RAM area where the write data is stored.

- u08_ees_identifier: Specifies the data ID of the write data.

3 R_EES ENUM_CMD_READ Note! [Read Processing]

Read the specified data from an EES block.

* The following arguments must be specified prior to execution.

- np_u08_ees_address: Specifies a pointer to the start address of the
RAM area where the read data is stored.

- u08_ees_identifier: Specifies the data ID of the read data.

4 R_EES_ENUM_CMD_REFRESH [Refresh Processing]

Note1,2 Copy the latest stored data from the active block (copy source EES
block) to the next block (copy destination EES block) in the EES pool

after the erase processing. This makes the copy destination block

active.
5 R_EES_ENUM_CMD_FORMAT [Format Processing]
Initialize (erase) everything, including the data recorded in the whole

EES pool. Be sure to use this command before using EEPROM
emulation for the first time. Note that issuing this command is also
necessary to initialize all blocks if a malfunction occurs in an EES block
(such as an active block disappearing) or the values in the descriptor
table (those which are fixed values that cannot be changed) are
modified.

Because EEPROM emulation switches to the stopped state (opened)
regardless of the results after the processing finishes, execute the
R_EES_ENUM_CMD_STARTUP command to continue using EEPROM

emulation.
6 R_EES_ENUM_CMD_SHUTDOWN | [Shutdown Processing]
Note1 Set the EEPROM emulation operation to the stopped state (opened).
Notes 1: Do not execute this command until the R_EES ENUM_CMD_STARTUP command has finished

normally.
2: The erase processing is performed by executing the R_EES_ ENUM_CMD_REFRESH command.

R20UT5008EJ0120 Rev.1.20 NS Page 41 of 136
Sep.28.23 RENES

EES RL78 Type 01 5. User Interface

5.2.3 RFD Control API Functions for EES

Table 5-3 shows RFD control API functions for EES.
This function is used internally by EES. It does not need to be used directly by the user.

Table 5-3 List of RFD Control API Functions for EES

API Name Overview
1 | R_LEES_EXRFD_lInit Initializes RFD RL78 Type 01.
2 | R_EES_EXRFD_Open Set the data flash control register (DFLCTL) to the state where
accessing the data flash memory is permitted(DFLEN = 1).
3 | R_EES_EXRFD_Close Set the data flash control register (DFLCTL) to the state where

access to the data flash memory is inhibited (DFLEN = 0). All ongoing
EES processing stop.

4 | R_EES_EXRFD_Erase Start erasing the EES block(one virtual block).

5 | R_EES EXRFD_Write Starts writing to the specified the data flash memory address(one
byte).

6 | R_EES_EXRFD_BlankCheck Starts Blank check to the specified the data flash memory address.

7 | R_EES_EXRFD_Read Reads the specified address in the data flash memory.

8 R_EES EXRFD_Handler Continues processing of the RFD control function for EES that is

executing, and confirms termination.

R20UT5008EJ0120 Rev.1.20 NS Page 42 of 136
Sep.28.23 RENES

EES RL78 Type 01 5. User Interface

5.3 State Transitions

To use EEPROM emulation from a user-created program, it is necessary to initialize the EES and execute

functions that perform operations such as reading and writing on EES blocks. Figure 5-3 shows the overall
state transitions, and Figure 5-4 shows an operation flow for using basic features. When using EEPROM

emulation, incorporate EEPROM emulation into user-created programs by following this flow.

Not powered

PowerON
R_| EES Init() Power OFF
R_EES Open R_EES_Close()

R_EES_Execute status: OK
(FORMAT) status: ERROR
R_EES_Execute

(STARTUP) status: ERROR

R_EES_Execute \‘ -
(SHUTDOWN) Startup executing Format executing
busy busy
status: ERROR
POOL_EXHAUSTED
2 status:0K R_EES Execue p pes Execute
(STARTUP) (FORMAT)

R_EES_Execute
(SHUTDOWN)

R_EES_Execute status: OK
status: OK R_EES_Execute (WRITE/ READ/ status: ERROR
status: ERROR (READ) REFRESH)

status: ERROR
POOL_EXHAUSTED

EEPROM command executing
busy

EEPROM command executing
busy

Figure 5-3 State Transitions Diagram

Note 1: Once the R_EES_ENUM_CMD_FORMAT command has started running, execute the

R_EES_Handler function to check for its completion.

R20UT5008EJ0120 Rev.1.20 RENESAS Page 43 of 136

Sep.28.23

EES RL78 Type 01 5. User Interface

[Overview of state transitions diagram]
To use EES to manipulate the data flash memory, it is necessary to execute the provided functions in order

to advance the processing.

(1) Not powered
Status is Power Off.

(2) closed
This is the state in which the data to perform EEPROM emulation is initialized by executing the
R_EES_Init functions (no ongoing operation to the data flash memory).
Do not execute "operation of the code flash memory", STOP mode or HALT mode while the
EEPROM emulation is executing. In the case where they are executed, execute R_EES_Close

function and change to a Closed state.

(3) opened
This state is switched to by executing R_EES_Open in the closed state and makes it possible to
perform operations on the data flash memory. Even if the R_EES_Close function is executed, do not
execute "operation of the code flash memory", STOP mode, or HALT mode until a state changes to
"closed".

(4) started
This state is switched to by executing the R_ EES ENUM_CMD_STARTUP command in the opened
state and makes it possible to execute EEPROM emulation. Writes and reads that use EEPROM

emulation are performed in this state.

(5) exhausted
This state is made from the opened or started state when continuously usable EES blocks have
been exhausted during command execution. In this state, only R_ EES_ENUM_CMD_READ, and
R_EES_ENUM_CMD_SHUTDOWN commands are executable.

(6) busy
This is the state used when executing a specified command. The state that is switched to differ

depending on which command is executed and how it terminates.

R20UT5008EJ0120 Rev.1.20 NS Page 44 of 136
Sep.28.23 RENES

EES RL78 Type 01 5. User Interface

54 Basic Flowchart

Figure 5-4 below shows the basic procedure to perform read and write operations for the data flash by using

the EES.

(1) R_EES_Init function

v

(2) R_EES_Open function

v

(3) R_EES_Execute function
R_EES_ENUM_CMD_STARTUP
(4) R_EES_Execute function
R_EES_ENUM_CMD_WRITE

>
)
Yy

Yes

R_EES_ERR_POOL_FULL

No
v

(5) R_EES_Execute function (6) R_EES_Execute function]

R_EES_ENUM_CMD_READ R_EES_ENUM_CMD_REFRESH

v

(7) R_EES_Execute function
R_EES_ENUM_CMD_SHUTDOWN

v

(8) R_EES_Close function

End

Figure 5-4 Basic Flowchart of EES
Notes 1: When using the EEPROM emulation for the first time, be sure to execute the

R _EES ENUM_CMD_FORMAT command.
2: This flowchart omits error handling and R_EES Handler processing after command execution.

R20UT5008EJ0120 Rev.1.20 RENESAS Page 45 of 136

Sep.28.23

EES RL78 Type 01 5. User Interface

[Overview of basic operation flow]
(1) EES initialization processing (R_EES_Init)
Initialize the parameters used by the EES.

(2) EEPROM emulation preparation processing (R_EES_Open)
Set the data flash memory to a state (opened) for which control is enabled to execute EEPROM

emulation.

(3) EEPROM emulation execution start processing (R_EES Execute: R EES ENUM_CMD_STARTUP

command)
Set the system to a state (Full Access) in which EEPROM emulation can be executed.

(4) EEPROM emulation data write processing (R_EES_Execute: R_EES _ENUM_CMD_WRITE command)
Write the specified data to an EES block.

(5) EEPROM emulation data read processing (R_EES Execute: R_EES ENUM_CMD_READ command)
Read the specified data from an EES block.

(6) EEPROM emulation refresh processing (R_EES_Execute: R_EES_ENUM_CMD_REFRESH command)
The latest stored data is copied from the active block (source block) to the next block (destination block)
in the EES pool after the erase processing. This makes the copy destination block active.

(7) EEPROM emulation execution stop processing (R_EES_Execute: R_EES_ENUM_CMD_SHUTDOWN

command)
Set the EEPROM emulation operation to the stopped state (opened).

(8) EEPROM emulation end processing (R_EES_Close)
Set the data flash memory to a state (closed) for which control is disabled to stop EEPROM emulation.

R20UT5008EJ0120 Rev.1.20 NS Page 46 of 136
Sep.28.23 RENES

EES RL78 Type 01 5. User Interface

5.5 Command Operation Flowchart

The figure below shows the basic procedure to perform read and write operations for data flash by using the

EES.
(Start)

A
(1) R_EES_Execute function

&
w

) 4

Busy

(3) R_EES_Handler function

(2) Busy state check

Not busy
Abnormal end
(4) Final state check
Normal end
\ 4

Normal end

Figure 5-5 Command Operation Flowchart

(1) R_EES_Execute function
Perform operations for the data flash memory.

(2) Busy state check
Check e_status of the request structure (st_ees_request_t).
When e_status is R_ EES_ ENUM_RET_STS_ BUSY, continue the data flash operation. If the value of
e_status is other than R_EES_ENUM_RET_STS_BUSY, check the final state.

(3) R_EES_Handler function
Control the EES while it is running. By repeating the execution of the R_EES Handler function, continue

the data flash operation.

(4) Final state check
If the final state is R_EES_ENUM_RET_STS_OK, the operation ends normally. Otherwise, it will be

terminated with an error.

R20UT5008EJ0120 Rev.1.20 NS Page 47 of 136
Sep.28.23 RENES

EES RL78 Type 01

5. User Interface

5.6 Data Type Definitions

5.6.1 Data Types

Table 5-4 shows the data type definitions in EES RL78 Type 01.

Table 5-4 Data Type Definitions in EES RL78 Type 01

Macro Value Type Description
int8_t signed char 1-byte signed integer
uint8_t unsigned char 1-byte unsigned integer
int16_t signed short 2-byte signed integer
uint16_t unsigned short 2-byte unsigned integer
int32_t signed long 4-byte signed integer
uint32_t unsigned long 4-byte unsigned integer
bool unsigned char Boolean value (false = 0, true = 1)

Remark: In the C language standard C 99 and later, these data types are defined in “stdint.h” and
“stdbool.h”.

5.6.2 Global Variables

The following shows the global variables used in EES RL78 Type 01.

(1) g_ar_u08_ees_descriptorR_EES_VALUE_U08_VAR_NO + 2u]

Type/Name

uint8_t g_ar_u08_ees_descriptor(]

Default value

(uint8_t)(R_EES_VALUE_UO08_VAR_NO),
(uint8_t)(sizeof(type_A)),
(uint8_t)(sizeof(type_B)),

)
)
(uint8_t)
(uint8_t)
)
)
)

(uint8_t)(sizeof(type_E)),
(uint8_t)(sizeof(type_F)),
(uint8_t)(sizeof(type_X)),

),

/* zero terminator */

(uint8_t)(sizeof(type_Z
(uint8_t)(0x00u)

(

(

()
(sizeof(type_C)),
(sizeof(type_D)),
()

()

[*id=1*/
[*id=2"%/
[*id=3"%
[*id=4"%/
[*id=5%
[*id=6 */
[*id=7*/
/*id=8 */

[* variable count */

Description

Stores the data size of each data identifier (Data ID).

Definition file

r_ees_descriptor.c

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 48 of 136

EES RL78 Type 01 5. User Interface

(2) g_st_ees_exrfd_descriptor

Type/Name st_ees_exrfd_descriptor_t g_st_ees_exrfd_descriptor

Default value (uint16_t) R_EES_EXRFD_VALUE_U16_PHYSICAL_BLOCK_SIZE

(uint8_t) R_LEES_EXRFD_VALUE_UO08_PHYSICAL_BLOCKS_PER_VIRTUAL_BLOCK
(uint8_t) R_EES_EXRFD_VALUE_U08_POOL_VIRTUAL_BLOCKS

Description Contains settings that configure the EES pool

- uint16_t u16_ees_physical_block_size;
The size of one block of data flash memory (Physical block size).
Example: This value is fixed for RL78/G2x. (256u)
- uint8_t u08_ees_physical_blocks_per_virtual_block;

The number of data flash memory blocks to set in the EES block (Number of physical
blocks).

Example: When setting 512 bytes for EES block. Number of data flash memories. (2u)

Example: When setting 1024 bytes for EES block. Number of data flash memories. (4u)
= uint8_t u08_ees_pool_virtual_blocks;

EES pool size (Number of virtual blocks)

Example: Total EES blocks. (4u)

Definition file r_ees_descriptor.c

(3) g_ar u16_ram_ref table[R_EES VALUE U08 VAR NO]

Type/Name uint16_t g_ar_u16_ram_ref_table[]
Default value -
Description Contains reference data for each data identifier (Data ID).
Definition file r_ees_descriptor.c
R20UT5008EJ0120 Rev.1.20 RENESAS Page 49 of 136

Sep.28.23

EES RL78 Type 01 5. User Interface

5.6.3 Enumerations

« e_ees_command (enumerated-type variable name: e_ees_command_t)
EES executable command

Symbol Name Value Description
R_EES_ENUM_CMD_UNDEFINED 0x00 Undefined command (Initial value)
R _EES ENUM_CMD_STARTUP 0x01 Startup processing
R_EES ENUM_CMD_WRITE 0x02 Write processing
R_EES ENUM_CMD_READ 0x03 Read processing
R_EES _ENUM_CMD_REFRESH 0x04 Refresh processing
R_EES_ENUM_CMD_FORMAT 0x06 Format processing
R_EES_ENUM_CMD_SHUTDOWN 0x07 Shutdown processing

o e _ees_ret status (enumerated-type variable name: e_ees_ret_status_t)
o EES return values

Symbol Name Value Description
R_EES_ENUM_RET_STS_OK 0x00 Normal end
R_EES_ENUM_RET_STS_BUSY 0x01 Busy
R_EES_ENUM_RET_ERR_CONFIGURATION 0x82 EES configuration error
R_EES_ENUM_RET_ERR_INITIALIZATION 0x83 EES initialization error
R _EES ENUM_RET _ERR_ACCESS LOCKED 0x84 EEPROM emulation lock error
R_EES ENUM_RET_ERR_PARAMETER 0x85 Parameter error
R_EES_ENUM_RET_ERR_WEAK 0x86 Weak error
R_EES_ENUM_RET_ERR_REJECTED 0x87 Reject error
R_EES_ENUM_RET_ERR_NO_INSTANCE 0x88 No instance
R_EES_ENUM_RET_ERR_POOL_FULL 0x89 Pool full error
R_EES_ENUM_RET_ERR_POOL_INCONSISTENT 0x8A EES block Inconsistency error
R_EES_ENUM_RET_ERR_POOL_EXHAUSTED 0x8B EES block exhaustion error
R_EES_ENUM_RET_ERR_INTERNAL 0x8C Internal error
R_EES_ENUM_RET_ERR_FLASH_SEQ 0x8D Flash sequencer error

R20UT5008EJ0120 Rev.1.20 RENESAS Page 50 of 136

Sep.28.23

EES RL78 Type 01 5. User Interface

« e_ees_exrfd_ret status (enumerated-type variable name: e_ees_exrfd_ret_status_t)
These enumeration types are used internally by EES. It does not need to be used directly by the user.
RFD control functions for EES return values

Symbol Name Value Description
R_EES_EXRFD_ENUM_RET_STS_OK 0x00 Normal end
R_EES_EXRFD_ENUM_RET_STS_BUSY 0x01 Busy
R_EES_EXRFD_ENUM_RET_ERR_CONFIGURATION 0x10 Configuration error
R_EES_EXRFD_ENUM_RET_ERR_INITIALIZATION 0x11 Initialization error
R_EES_EXRFD_ENUM_RET_ERR_REJECTED 0x12 Reject error
R _EES EXRFD_ENUM_RET_ERR_PARAMETER 0x13 Parameter error
R_EES_EXRFD_ENUM_RET_ERR_INTERNAL 0x14 Internal error

R_EES_EXRFD_ENUM_RET_ERR_MODE_MISMATCHED | 0x20 | Mode mismatch error

Code/data flash area sequencer

R_EES_EXRFD_ENUM_RET_ERR_CFDF_SEQUENCER o2t | o0

R_EES_EXRFD_ENUM_RET_ERR_ERASE 0x22 Erase operation error

R_EES_EXRFD_ENUM_RET_ERR_BLANKCHECK 0x23 Blank check operation error

R_EES_EXRFD_ENUM_RET_ERR_WRITE 0x24 Write operation error
R20UT5008EJ0120 Rev.1.20 RENESAS Page 51 of 136

Sep.28.23

EES RL78 Type 01

5. User Interface

5.7

Specifications of APl Functions

This section describes the detailed specifications of the API functions of EEPROM Emulation Software (EES)

RL78 Type 01.

There are some prerequisites for using the API functions of EES RL78 Type 01 to reprogram the data flash
memory. If the prerequisites are not satisfied, execution of the API functions may result in indeterminate

operation.

Prerequisites:

« Execute the R_EES _Init function once before starting the use of EES functions.

« The high-speed on-chip oscillator must be active while self-programming is in progress. Execute API
functions of EES RL78 Type 01 only while the high-speed on-chip oscillator is active.

« To control the data flash memory, execute API functions of EES RL78 Type 01 while access to the data
flash memory is enabled. For the method of enabling access to the data flash memory, refer to “User’s
Manual: Hardware” of a target device.

The following shows the format for describing the specifications of API functions.

Description format:

Information:
Syntax Syntax for calling this function from a C-language program
Reentrancy Reentrant or Non-reentrant
Parameters Input parameters for this Parameter [Value, range, meaning of the
(IN) function parameter, etc.]
Parameters Input/output parameters for this Parameter [Value, range, meaning of the
(IN/OUT) function parameter, etc.]
Parameters Output parameters for this Parameter [Value, range, meaning of the
(OUT) function parameter, etc.]

Return Value

Type of the return value from
this function

(Enumerated type, pointer type,
etc.)

Enumerator (constant value) of the return value:
Value

[Meaning of the constant: Detailed description]

Enumerator (constant value) of the return value:
Value

[Meaning of the constant: Detailed description]

Description

Overview of function

Preconditions

Overview of preconditions

Remarks

Special notes on this function

Details of Specifications:

The operation of this function is described.

Notes:

Conditions of usage or restrictions on this function are described.

R20UT5008EJ0120 Rev.1.20
Sep.28.23

LENESAS

Page 52 of 136

EES RL78 Type 01 5. User Interface

5.71 Specifications of API Functions for EES RL78 Type 01

This section describes the API functions used for EES RL78 Type 01.

5.7.1.1 R_EES_Init

Information:

Syntax R_EES_FAR_FUNC e_ees_ret_status_t R_EES_Init(uint8_ti_u08_cpu_frequency);

Reentrancy Non-reentrant

Parameters uint8_t CPU operating frequency

(IN) i_u08_cpu_frequency [1 - 32(MHZz)] (Target: All devices)
[48 (MHZ)] (Target: RL78/G24)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value | e ees ret_status_t R _RFD_ENUM_RET_STS_ OK: 0x00
[Normal end]
R_EES_ENUM_RET_ERR_CONFIGURATION:
0x82
[EES configuration error]

Description Initializes internal data and variables and checks the descriptor configuration.

Preconditions Execute this function while the high-speed on-chip oscillator is active.

Remarks Execute this function once before starting the use of EES functions.

Details of Specifications:

Set the parameter (CPU operating frequency) to the R_EES EXRFD _Init function and execute it.

Notes:

When the configuration for executing the EEPROM emulation such as EES pool or EES block size is
abnormal, the return value will return a EES configuration error
(R_EES_ENUM_RET_ERR_CONFIGURATION).

The high-speed on-chip oscillator needs to be kept active while EEPROM emulation is in progress.
Execute this function while the high-speed on-chip oscillator is active.

* EES RL78 Type 01 does not activate or check the high-speed on-chip oscillator.

For the parameter (i_u08_cpu_frequency), specify the integer obtained by rounding up the fraction of the
CPU operating frequency that is actually used in the microcontroller.
(Example: When the CPU operates at 4.5 MHz, specify 5 in this initialization function.)

When the CPU operates at a frequency lower than 4 MHz, a value of 1 MHz, 2 MHz, or 3 MHz can be
used but a non-integer value such as 1.5 MHz cannot be used.

The frequency specified in the parameter (i_u08_cpu_frequency) should be the actual frequency at which
the CPU operates during flash memory reprogramming; it is not necessarily that the frequency of the
high-speed on-chip oscillator should be specified.

- If the specified frequency differs from the actual CPU operating frequency, the subsequent
operation is indeterminate. In this case, even if flash memory reprogramming is completed, the
written data value and data retention period may not be guaranteed.

* For the range of the CPU operating frequency, refer to “User’s Manual: Hardware” of a target
device.

R20UT5008EJ0120 Rev.1.20 NS Page 53 of 136
Sep.28.23 RENES

EES RL78 Type 01

5. User Interface

5.71.2 R_EES_Open

Information:

Syntax R_EES_FAR_FUNC e _ees_ret_status_t R_EES_Open(void);

Reentrancy Non-reentrant

Parameters N/A

(IN)

Parameters N/A

(IN/OUT)

Parameters N/A

(OUT)

Return Value e _ees_ret_status_t R_EES_ENUM_RET_STS_OK: 0x00
[Normal end]

R_EES ENUM_RET_ERR_REJECTED: 0x87

[Reject error]

Details of Specifications:

Description

EEPROM emulation preparation processing.
This function makes the EEPROM emulation executable.

Preconditions

R_EES_Init function must have finished normally.

Remarks

o Execute the R_EES_EXRFD_Open function to make the data flash memory accessible.

Notes:

« When the R_EES _Init function is not executed and the internal variable has not been initialized, the
return value will return a reject error (R_EES_ENUM_RET_ERR_REJECTED).

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 54 of 136

EES RL78 Type 01

5. User Interface

5.71.3 R_EES_Close

Information:
Syntax R_EES_FAR_FUNC e _ees_ret_status_t R_EES_Close(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
e_ees_ret_status_t R_EES_ENUM_RET_STS_OK: 0x00
Return Value
[Normal end]

Details of Specifications:

Description

EEPROM emulation end processing.
This function makes the EEPROM emulation un-executable.

Preconditions

Remarks

o Executes the R_EES EXRFD_Close function and finishes the EEPROM emulation.

Notes:

« If EEPROM emulation was executed, the R_EES ENUM_CMD_SHUTDOWN command must be used to
set EEPROM emulation to the stopped state (the open state).

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS Page 55 of 136

EES RL78 Type 01 5. User Interface

5.7.1.4 R_EES_Execute

Information:
Syntax R_EES_FAR_FUNC void R_EES_Execute(st_ees_request_t _ near *
ionp_st_ees_request);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters st_ees _request t __ near* Pointer to the request structure (st_ees_request_t)
(IN/OUT) ionp_st_ees_request
Parameters N/A
(OUT)
Return Value N/A

Description EEPROM emulation execution function.
Each type of processing for performing EEPROM emulation operations is specified for
this function as an argument in the command format, and the processing is executed.

Preconditions R_EES_Init and R_EES_Open function must have finished normally.

Remarks -

Details of Specifications:
« Starts processing of the command set in the Request structure.
Notes:

« The R_EES_Execute function starts command processing and then immediately returns the control to the
user program. The command processing is continued by executing the R_EES_Handler function.
Therefore, the R_EES _Handler function must be executed continuously until the command processing is
completed.

« Execute the repeat the R_EES Handler function while the e_status of the Request
structure(st_ees_request_t)is R_EES_ENUM_RET_STS_BUSY.

« ltis not allowed to call R_EES_Execute function in an interrupt service routine.

R20UT5008EJ0120 Rev.1.20 NS Page 56 of 136
Sep.28.23 RENES

EES RL78 Type 01

5. User Interface

Command Execution States of R_EES_Execute/R_EES_Handler (e_ees_ret_status_t) (1/2)

Corresponding

Command Execution Status | Catego Description
xecut . S e Commands
R_EES_ENUM_RET_STS_ |Meaning |Normal end
OK Cause None
All commands
Actionto [None
be taken
R_EES_ENUM_RET_STS_ |Meaning |[A command is being executed.
BUSY Cause None Commands other than
R_EES _ENUM_CMD_
Actionto | Keep calling the R_EES_Handler function until the status SHUTDOWN
be taken [changes.
R_EES _ENUM_RET_ERR_ |Meaning Initialization error
INITIALIZATION Cause R_EES_Init, and R_EES_Open functions have not been
finished normally. All commands
Actionto | Normally finish the R_EES_Init, and R_EES_Open
be taken |functions.
R_EES ENUM_RET_ERR_ |Meaning [EEPROM emulation lock error Commands other than
ACCESS_LOCKED Cause EEPROM emulation cannot be executed. R_EES_ENUM_CMD_
Action to | Make sure that the R_EES_ENUM_CMD_STARTUP STARTUP and
- R_EES_ENUM_CMD_
be taken | command has finished normally. FORMAT
R_EES_ENUM_RET_ERR_ |Meaning [Parameter error
PARAMETER Cause An incorrect command parameter has been specified.
All commands
Action to o
Check the specified parameter.
be taken
R_EES_ENUM_RET_ERR_ |Meaning [Found weak data in the active block header or instances.
WEAK Write processing an active block header or stored data may
Cause . R_EES_ENUM_CMD_
have been interrupted.
STARTUP
Actionto | Execute the R_EES_ENUM_CMD_REFRESH command.
be taken
R_EES _ENUM_RET_ERR_ | Meaning Reject error
REJECTED Cause A different command is being executed.
All commands
Actionto | Call the R_EES_Handler function to terminate the
be taken | ongoing command.

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 57 of 136

EES RL78 Type 01

5. User Interface

Command Execution States of R_EES_Execute/R_EES_Handler (e_ees_ret_status_t) (2/2)

Corresponding

emulation.

Command Execution Status | Catego Description
xecut . S e Commands
R_EES_ENUM_RET_ERR_ |Meaning [No-write-data error
NO_INSTANCE Cause The specified identifier data has not been written. R_EES_ENUM_CMD_
Action to | Write data to the identifier specified using the READ
be taken |R_EES_ENUM_CMD_WRITE command.
R_EES_ENUM_RET_ERR_ |Meaning |Pool full error
POOL_FULL Cause There is no area that can be used to write the data. R_EES_ENUM_CMD_
Action to | Execute the R_EES_ENUM_CMD_REFRESH command | WRITE
be taken |and restart writing data.
R_EES_ENUM_RET_ERR_ |Meaning |EES block inconsistency error
POOL_INCONSISTENT An EES block has the undefined state (such as there are
Cause . R_EES _ENUM_CMD_
no active blocks).
STARTUP
Actionto |Execute the R_ EES_ ENUM_CMD_FORMAT command to
be taken |initialize the EES blocks.
R_EES_ENUM_RET_ERR_ | \eaning |EES block exhaustion error R_EES_ENUM_CMD_
POOL_EXHAUSTED STARTUP
Cause There are no more EES blocks that can be used to
continue. R_EES _ENUM_CMD_
Stop EEPROM emulation. FORMAT
. . R_EES_ENUM_CMD_
: You can try restoration by executing the
Action to REFRESH
R_EES_ENUM_CMD_FORMAT command (erasing all
be taken - o R_EES_ENUM_CMD_
existing data) or read existing data
WRITE
R_EES_ENUM_RET_ERR | Meaning Internal error
INTERNAL Cause An unexpected error has occurred. Commands other than
R_EES _ENUM_CMD_
Action to | Exit the EEPROM emulation. SHUTDOWN
be taken | Check the device state.
R_EES _ENUM_RET_ERR_ |Meaning Flash area sequencer error
FLASH_SEQ Cause EES failed to change flash memory mode or start flash
sequencer. Commands other than
The EES should be stopped. R_EES_ENUM_CMD_
Actionto | Check whether flash memory operation using RFD RL78 SHUTDOWN
be taken | Type 01 is executed besides operation of an EEPROM

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 58 of 136

EES RL78 Type 01 5. User Interface

5.7.1.5 R_EES_Handler

Information:
Syntax R_EES_FAR_FUNC void R_EES_Handler(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)
Return Value N/A

Description Continuous EEPROM emulation execution processing.

This function is used to check for the completion of processing while allowing
processing of EEPROM emulation specified by the R_EES_Execute function to
continue.

Preconditions | R _EES Initand R_EES_Open function must have finished normally.

Remarks -

Details of Specifications:
« Continues processing the EEPROM emulation initiated by the R_EES_Execute function.
Notes:

« While "e_status" of the request structure (st_ees_request_t) is R_EES_ENUM_RET_STS_BUSY, execute
this function repeatedly.

o ltis not allowed to call R_EES_Handler() in an interrupt service routine.

« The command execution status of the R_EES Handler function is set for the "st _ees _request t*
ionp_st_ees_request” used as an argument of the R_EES_Execute function. Therefore, when using the
R_EES_Handler function, do not free the “st_ees request_t * ionp_st ees_request” variable.

R20UT5008EJ0120 Rev.1.20 NS Page 59 of 136
Sep.28.23 RENES

EES RL78 Type 01 5. User Interface

5.7.1.6 R_EES_GetSpace

Information:

Syntax R_EES_FAR_FUNC e_ees_ret_status_t R_EES_GetSpace(uint16_t _ near *
onp_u16_space);

Reentrancy Non-reentrant

Parameters N/A

(IN)

Parameters N/A

(IN/OUT)

Parameters uint16_t __ near* Pointer to variable that contains free space information

(OUT) onp_u16_space for the current active block.

Return Value e_ees_ret_status_t R_EES_ENUM_RET_STS_OK : 0x00

[Normal end]
R_EES_ENUM_RET_ERR_INITIALIZATION : 0x83
[EES initialization error]
R_EES_ENUM_RET_ERR_ACCESS_LOCKED: 0x84
[EEPROM emulation lock error]
R_EES ENUM_RET_ERR_REJECTED: 0x87
[Reject error]

Description Gets the free space of the active block.

Preconditions R_EES_Init and R_EES_Open function must have finished normally.
R_EES_Execute function and the R_EES_ENUM_CMD_STARTUP command must
be executed successfully before.

Remarks

Details of Specifications:
« Calculate the free space of the active block.
Notes:

« When the R_EES_Init function is not executed and the internal variable has not been initialized, the
return value will return a EES initialization error (R_EES_ENUM_RET_ERR_INITIALIZATION).

« Whenthe R_EES ENUM_CMD_STARTUP command does not finish normally with the R_EES_ Execute
function, the return value will return a EEPROM emulation lock error
(R_EES_ENUM_RET_ERR_ACCESS_LOCKED).

« When the R_EES_Execute function is executing a EES command, the return value will return a Reject
error (R_LEES_ENUM_RET_ERR_REJECTED).

« In case the EES pool is exhausted the returned space value will always be 0x0000.

« When the write operation of the "active block header" or "stored data written" may have been interrupted,
0x0000 is returned to the free space.

« When an error value is returned, the free space information is not collected.

R20UT5008EJ0120 Rev.1.20 NS Page 60 of 136
Sep.28.23 RENES

EES RL78 Type 01

5. User Interface

5.7.2 RFD Control API Functions for EES

This section describes the RFD control API functions for EES. These functions are called from the EES
control function. Do not call it directly from a user program.

Information:
Syntax R_EES_FAR_FUNC e_exrfd_ret_status t R_EES_EXRFD_Init(
uint8_ti_u08_cpu_frequency);
Description Initializes RFD RL78 Type 01.
Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Open(void);
Description Set the data flash control register (DFLCTL) to the state where accessing the data
flash memory is permitted(DFLEN = 1).
Information:
Syntax R_EES _FAR_FUNC e_ees_exrfd_ret_status t R_EES_EXRFD_Close(void);
Description Set the data flash control register (DFLCTL) to the state where access to the data
flash memory is inhibited (DFLEN = 0). All ongoing EES processing stop.
Information:
Syntax R_EES_FAR_FUNC e _ees_exrfd_ret_status t R_EES_EXRFD_Erase(
uint8_ti_u08_virtual_block_number);
Description Start erasing the EES block(one virtual block).
Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status t R_EES_EXRFD_Write(
uint16_t i_u16_offset_addr,
uint8 t near *inp_u08_write_data,
uint16_ti_u16_size);
Description Starts writing to the specified the data flash memory address(one byte).
Information:
Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status t R_EES_EXRFD_BlankCheck(
uint16_ti_u16_offset_addr,
uint16_ti_u16_size);
Description Starts Blank check to the specified the data flash memory address.

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS Page 61 of 136

EES RL78 Type 01

5. User Interface

Information:

Syntax R_EES_FAR_FUNC e_ees_exrfd_ret_status_t R_EES_EXRFD_Read(
uint16_ti_u16_offset_addr,
uint8_t __ near * onp_u08_read_data,
uint16_ti_u16_size);

Description Reads the specified address in the data flash memory.

Information:
Syntax R_EES_FAR_FUNC e _ees_exrfd_ret_status_t R_EES_EXRFD_Handler(void);
Description Continues processing of the RFD control function for EES that is executing, and
confirms termination.
Information:

Syntax static R_EES_FAR_FUNC e_ees_exrfd_ret_status_t
r_ees_exrfd_get_seq_error_status(void);

Description Obtain the execution result from the flash memory sequencer.

Information:
Syntax static R_EES_FAR_FUNC e _ees_exrfd_ret_status_tr_ees_exrfd_finish_state(void);
Description Sets the RFD control functions for EES to the end status.

Information:

Syntax static R_EES_FAR_FUNC e_ees_exrfd_ret_status_t
r_ees_exrfd_check_cmd_executable(void);

Description Check the status and flags of the RFD control functions for EES.

Information:

Syntax static R_EES_FAR_FUNC bool r_ees_exrfd_is_valid_byte_parameter(
uint16_ti_u16_offset_addr,
uint16_ti_u16_size);

Description Check the parameters used by the RFD Control functions for EES.

Information:
Syntax static R_EES_FAR_FUNC void r_ees_exrfd_clear_cmd_workarea(void);
Description Clears the data area used by the RFD control functions for EES.
Information:

Syntax static R_EES_FAR_FUNC void r_ees_exrfd_blankcheck_byte_req(
uint32_ti_u32_start_addr,
uint16_ti_u16_size);

Description Starts Blank check to the specified the data flash memory address

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS Page 62 of 136

EES RL78 Type 01

5. User Interface

5.7.3 Internal Functions for the EES

This section describes the functions used by the EES functions. These functions are internal functions called

from the EES functions. Do not call it directly from a user program.

Information:
Syntax R_EES_FAR_FUNC bool r_ees_is_valid_configuration(void);
Description Check the EES configuration and initialize the internal status.
Information:
Syntax R_EES_FAR_FUNC bool r_ees_is_valid_requester(
st_ees request_t __ near * ionp_st_ees_request);
Description Check "request structure" and "EES status" and update internal status.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_startup_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_startup_state_09(void);
Description Updates the internal status for startup processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_write_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_write_state_04(void);
Description Updates the internal status for write processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_read_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_read_state_01(void);
Description Updates the internal status for read processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_refresh_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_refresh_state_17(void);
Description Updates the internal status for refresh processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_format_state_00(void); ~
R_EES_FAR_FUNC void r_ees_fsm_format_state_11(void);
Description Updates the internal status for format processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_shutdown_state_00(void);
Description Execute the shutdown processing of the EEPROM emulation.

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS Page 63 of 136

EES RL78 Type 01 5. User Interface

Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_erase_state_00(void);
Description Start the erase processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_bw_state_00(void);
Description Starts the blank check and write processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_inner_blankcheck_state_00(void);
Description Start internal processing of the blank check.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_write_state_00(void);
Description Start the write processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_inner_write_state_00(void);
Description Start internal processing of the write.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_read_state_00(void);
Description Start the read processing.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exrfd_cmd_state_01(void);
Description Proceed with the internal processing of the executed RFD control functions for EES.
Information:
Syntax R_EES_FAR_FUNC void r_ees_fsm_exit_state(void);
Description Dummy processing.
Information:
Syntax static R_LEES_FAR_FUNC uint8_t r_ees_calculate_next_a_flag(
uint8_ti_u08_a_flag_value);
Description Calculates the value of the A flag.
R20UT5008EJ0120 Rev.1.20 RENESAS Page 64 of 136

Sep.28.23

EES RL78 Type 01 5. User Interface

Information:
Syntax static R_EES_FAR_FUNC void r_ees_fsm_finish_command(void);
Description Terminates the execution command.
Information:
Syntax static R_EES_FAR_FUNC void r_ees_fsm_swap_acvive_block_info(void);
Description Swaps the active block information.
Information:
Syntax static R_EES_FAR_FUNC bool r_ees_fsm_exrfd_cmd_detect_fatal_error(
e _ees_exrfd_ret_status ti_e ees_exrfd_ret_value);
Description Check the results of the RFD control function for the EES for errors that make the EES
unsustainable.
Information:
Syntax static R_EES_FAR_FUNC e_ees_block_status_t
r_ees_fsm_get_ees_block_status(void);
Description Obtains the state of the EES block.
R20UT5008EJ0120 Rev.1.20 RENESAS Page 65 of 136

Sep.28.23

EES RL78 Type 01 6. Sample Programs

6. Sample Programs

This chapter describes the sample programs provided together with EES RL78 Type 01. This chapter is
explained in the sample program example for RL78/G23. When using a device other than RL78/G23, read
“G23” to the target device.

6.1 File Structure

6.1.1 Folder Structure

Figure 6-1 shows an example of using RL78/G23. The installed “sample” folder contains a folder for each
device group (e.g. RL78_G23, RL78_G24). Read the folder name "RL78_G23" of the sample of RL78/G23
as the folder name of a target device.

The folder name in the case of using RL78/G24: “RL78_G24”

When using the sample programs, include only the folder for the target device.
Figure 6-1 shows the structure of sample program folders.

: : Folders of sample programs
EESRL7ETO1

include EES RL78 Type 01
e i—’ include files

sample

Comimen

include

source 4

EES

Sample programs

RL78_G23
EES

SOUreE i—’ EES RL78 Type 01
EES program source files

USEroWn EES RL78 Type 01

include user-own files

Figure 6-1 Structure of Sample Program Folders

R20UT5008EJ0120 Rev.1.20 NS Page 66 of 136
Sep.28.23 RENES

EES RL78 Type 01 6. Sample Programs

6.1.2 List of Files
6.1.2.1 List of Source Files
Table 6-1 shows the program source file in the “sample\common\source\ees\” folder.

Table 6-1 Program Source File in the “sample\common\source\ees\” Folder

No. Source File Name Description

1 sample_control_ees.c This file contains the functions for controlling the
EEPROM emulation.

Table 6-2 shows the program source file of the main processing in the “sample\RL78 G23” folder.
“sample\RL78_G23\EES\[compiler name]\source\” folder

Table 6-2 Program Source File of the Main Processing

No. Source File Name Description

1 main.c Sample file of the main processing functions

6.1.2.2 List of Header Files
Table 6-3 shows the program header files in the “sample\common\include\” folder.

Table 6-3 Program Header Files in the “sample\commonl\include\” Folder

No. Header File Name Description

1 sample_control_ees.h This file defines the prototype declarations of the sample
functions for controlling the EEPROM emulation.

2 sample_ees_defines.h This file defines the macros of the sample functions for
controlling the EEPROM emulation.

3 sample_ees_memmap.h This file defines the macros that describes the sections
used by the sample program that controls the EEPROM
emulation.

6.2 Data Type Definitions
6.2.1 Macro Defines

- Frequency setting macro
CPU frequency used in the sample program.

Symbol Name Value Description
SAMPLE_VALUE_UO08_CPU_FREQUENCY 32u CPU frequency (RL78_G23 folder)
48u CPU frequency (RL78_G24 folder)
R20UT5008EJ0120 Rev.1.20 RENESAS Page 67 of 136

Sep.28.23

EES RL78 Type 01 6. Sample Programs

6.3 Sample Program Functions
Table 6-5 shows the sample program functions.

Table 6-4 List of Sample Program Functions

API Function Name Outline
1 main Executes the main processing of the sample program for
controlling the EES.
2 Sample_EES_Control Write and read EES blocks according to the basic procedure for
using EES.

6.3.1 Sample Program for Controlling the EEPROM Emulation

The EES RL78 Type 01 rewrite control sample follows the basic operation procedure for using EES and
performs the rewrite and read processing of EES block.

Note: During EES command processing, the data in the data flash memory cannot be referenced.
Copy the data to be referenced within the function to RAM in advance, and reference them in
RAM.

Operating conditions (Example of a sample program for RL78/G23):

« CPU operating frequency: 32 MHz
(The high-speed on-chip oscillator clock (HOCO) is used for the main system clock.)

Figure 6-2 shows a flowchart of the main processing of the sample program for the EES.

6.3.1.1 main Function

Is HOCO activated ?

Yes No

o Return value<-EES configuration error ‘

»

1

Sample_EES_Control

- Processing for controlling the EEPROM emulation
- Return value <- Value returned from the function

<
<«

Figure 6-2 Flowchart of the Main Processing of the Sample Program for Controlling the EES.

R20UT5008EJ0120 Rev.1.20 NS Page 68 of 136
Sep.28.23 RENES

EES RL78 Type 01 6. Sample Programs

6.3.1.2 Sample_EES_Control Function

« Figure 6-3 shows the pre-processing required to use the EES and the write and read processing flow.

Sample_EES_Control

e Initialize the return value(= STS_OK)
e Initialize the error flag(= false)

R_EES_Init

Yes No

e Error flag <- true ‘

Error flag <> true ?
No Yes

R_EES Open

Yes No

e Error flag <- true ‘

- Initializes EES RL78 Type 01

Figure 6-3 Flowchart of Sample Processing for Controlling EEPROM Emulation (1/5)

R20UT5008EJ0120 Rev.1.20 NS Page 69 of 136
Sep.28.23 RENES

EES RL78 Type 01 6. Sample Programs

« EEPROM emulation execution startup processing.

O

e Initialize the requester.

Error flag <> true ?

No Yes

»
»

e Set the STARTUP command. - Setthe R_EES_ENUM_CMD_STARTUP command

R_EES Execute

l€
l]

¢ R_EES_Handler

No Yes
e Return value <- Processing result ‘ - The processing result is put into “|_e_ees_ret_value”.

Yes No
No Yes

e Error flag <- true ‘ - Startup error

d

)

e Set the FORMAT command. ‘ - Setthe R_EES_ENUM_CMD_FORMAT command

R_EES Execute

- Is the error content
R_EES_ENUM_RET_ERR_POOL_INCONSISTENT ?

l€
n |

¢ R_EES_Handler

No Yes
¢ Return value <- Processing result ‘ - The processing result is put into “I_e_ees_ret_value”.
Yes No
e Error flag <- true ‘ - Format error

- Is the command R_EES_ENUM_CMD_FORMAT ?, and
Is the error flag false ?

Figure 6-4 Flowchart of Sample Processing for Controlling EEPROM Emulation (2/5)

R20UT5008EJ0120 Rev.1.20 NS Page 70 of 136
Sep.28.23 RENES

EES RL78 Type 01 6. Sample Programs

« EEPROM emulation data write processing.

Error flag <> true ?

No .| Yes

o Set the write data - Set the write data.

o Set the address for write data - Set the address pointer for the write data.

¢ Set the write data ID(= 1u)

¢ Set the write command - Setthe R_EES_ENUM_CMD_WRITE command.

R_EES_Execute

P
]

¢ R_EES_Handler

No Yes

‘ ¢ Return value <- Processing result ‘ - The processing result is put into “|_e_ees_ret_value”.
Yes No
ool ful 5 - Is the error content
oot tulterror ¢ R_EES_ENUM_RET_ERR_POOL_FULL ?
No Yes

‘ e Error flag <- true ‘

| « Setthe REFRESH command. | - Set the R_EES_ENUM_CMD_REFRESH command.

R_EES_Execute

<
]
¢ R_EES_Handler
No Yes
‘ e Return value <- Processing result ‘ - The processing result is put into “I_e_ees_ret_value”.
|
Yes | No

‘ e Error flag <- true ‘

>
»

- Is the command R_EES_ENUM_CMD_REFRESH ?, and
R Is the error flag false ?

Yes No

»

®

Figure 6-5 Flowchart of Sample Processing for Controlling EEPROM Emulation (3/5)

R20UT5008EJ0120 Rev.1.20 NS Page 71 of 136
Sep.28.23 RENES

EES RL78 Type 01

6. Sample Programs

o EEPROM emulation data read processing.

Error flag <> true ?

No Yes

e Set the address for read data
» Set the read data ID(= 1u)
e Set the read command

R_EES_Execute

- Set the address pointer for the read data.

- Set the R_EES_ENUM_CMD_READ command.

- Read the data with the specified ID.

€

¢

No Yes
‘ e Return value <- Processing result ‘

No Yes

‘ o Initialize the counter(= 0) ‘

| -
>
Counter value < Size

t
Yes No

Read data match ?
Yes No

‘ e Increment the counter(+1). ‘

R_EES_Handler

- The processing result is put into “|_e_ees_ret_value”.

- Verification check through reading by the CPU

data[counter].

e Error flag <- true

®

— Compare the written data[counter] with the read

Figure 6-6 Flowchart of Sample Processing for Controlling EEPROM Emulation (4/5)

R20UT5008EJ0120 Rev.1.20
Sep.28.23

LENESAS

Page 72 of 136

EES RL78 Type 01 6. Sample Programs

o EEPROM emulation shutdown processing.

Error flag <> true ?

No Yes
| « Set the SHUTDOWN command. | - Set the R_EES_ENUM_CMD_SHUTDOWN command

R_EES_Execute

| €
¥

No Yes

- Proceeds with incomplete command processing.
R_EES_Handler

R_EES_ Execute

|
]

‘ e Return value <- Processing result ‘ - The processing result is put into “|_e_ees_ret_value”.

No ‘ Yes
‘ e Error flag <- true ‘

l€
Error flag <> true ?
No Yes

R_EES_Close

No Yes

‘ e Error flag <- true ‘

- Execute the R_EES_ENUM_CMD_SHUTDOWN
command again.

Closes the EEPROM emulation.

>
<

Figure 6-7 Flowchart of Sample Processing for Controlling EEPROM Emulation (5/5)

Note: Error handling and user processing for normal completion are omitted.

R20UT5008EJ0120 Rev.1.20 NS Page 73 of 136
Sep.28.23 RENES

EES RL78 Type 01

6. Sample Programs

6.4 Specifications of Sample Program Functions

This section describes the specifications of the functions in the sample programs for EES RL78 Type 01.
The sample programs for EEPROM emulation are examples of basic processing. The functions in the
sample programs can be used as reference for developing an application program.

Please be sure to thoroughly check the operation of the developed application program.

6.4.1 Sample Program Functions for Controlling the EEPROM Emulation

6.4.1.1 main
Information:

Syntax int main(void);
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)

Return Value

int

(e_ees_ret_status_t)

R_EES_ENUM_RET_STS_OK : 0x00
[Normal end]
R_EES ENUM_RET_STS_BUSY : 0x01
[Busy]
R_EES _ENUM_RET_ERR_CONFIGURATION : 0x82
[EES configuration error]
R_EES_ENUM_RET_ERR_INITIALIZATION : 0x83
[EES initialization error]
R_EES ENUM_RET_ERR_ACCESS_LOCKED : 0x84
[EEPROM emulation lock error]
R_EES ENUM_RET_ERR_PARAMETER : 0x85
[Parameter error]
R_EES _ENUM_RET_ERR_WEAK : 0x86
[Weak error]
R_EES ENUM_RET_ERR_REJECTED : 0x87
[Reject error]
R_EES_ENUM_RET_ERR_NO_INSTANCE : 0x88
[No instance]
R_EES_ENUM_RET_ERR_POOL_FULL : 0x89
[Pool full error]
R_EES ENUM_RET_ERR_POOL_INCONSISTENT : 0x8A
[EES block Inconsistency error]
R_EES ENUM_RET_ERR_POOL_EXHAUSTED : 0x8B
[EES block exhaustion error]
R_EES_ENUM_RET_ERR_INTERNAL : 0x8C
[Internal error]

R_EES _ENUM_RET_ERR_FLASH_SEQ : 0x8D
[Flash sequencer error]

Description

Executes the main processing of the sample program for controlling the EES.

Preconditions

Remarks

R20UT5008EJ0120 Rev.1.20

Sep.28.23

LENESAS

Page 74 of 136

EES RL78 Type 01

6. Sample Programs

6.4.1.2 Sample_EES_Control

Information:
Syntax R_EES FAR_FUNC e_ees ret_status_t Sample_EES_Control();
Reentrancy Non-reentrant
Parameters N/A
(IN)
Parameters N/A
(IN/OUT)
Parameters N/A
(OUT)

Return Value

e_ees_ret_status_t

R_EES_ENUM_RET_STS_OK : 0x00
[Normal end]
R_EES_ENUM_RET_STS_BUSY : 0x01
[Busy]
R_EES_ENUM_RET_ERR_CONFIGURATION : 0x82
[EES configuration error]
R_EES_ENUM_RET_ERR_INITIALIZATION : 0x83
[EES initialization error]
R_EES_ENUM_RET_ERR_ACCESS_LOCKED : 0x84
[EEPROM emulation lock error]
R_EES_ENUM_RET_ERR_PARAMETER : 0x85
[Parameter error]
R_EES_ENUM_RET_ERR_WEAK : 0x86
[Weak error]
R_EES_ENUM_RET_ERR_REJECTED : 0x87
[Reject error]
R_EES_ENUM_RET_ERR_NO_INSTANCE : 0x88
[No instance]
R_EES_ENUM_RET_ERR_POOL_FULL : 0x89
[Pool full error]
R_EES_ENUM_RET_ERR_POOL_INCONSISTENT : Ox8A
[EES block Inconsistency error]
R_EES_ENUM_RET_ERR_POOL_EXHAUSTED : 0x8B
[EES block exhaustion error]
R_EES_ENUM_RET_ERR_INTERNAL : 0x8C
[Internal error]
R_EES_ENUM_RET_ERR_FLASH_SEQ : 0x8D
[Flash sequencer error]

Description

Write and read EES blocks according to the basic procedure for using EES.

Preconditions

Remarks

When the verification check of the read data results in an error, it is not reflected in the

return value.

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS Page 75 of 136

EES RL78 Type 01 6. Sample Programs

6.5 Precautions in Case of Using Sample Program
- The precautions in the case of using RL78/G24.

Only the case which sets an option byte(000C2H/040C2H) to OxF0 and uses the clock frequency of CPU at
24 MHz is necessary for the following countermeasures. Modify into the comments or delete so that a part of
sample program for RL78/G24 may not compile.

If a red character part is compiled, prefetch buffer will become valid and will operate at 48 MHz.

Target folder:
\EESRL78T01\sample\RL78 G24\EES\[Compiler name]\source\

Target file:
CC-RL and LLVM: hdwinit.c
IAR: low_level_init.c

The following red character parts are the examples which modified the source code to the comment.

/* Start HOCO. It must be started before flash control. */
HIOSTOP = 0u;

[* Check CPU frequency in the user option byte (0x000C2). */
/* OxFO : HS mode 48 MHz */

/lif (OxFOu == (*(volatile unsigned char __far *)0x000C2u))

1K

1 /* Set CPU frequency 48 MHz (Enables the prefetch buffer). */
1 HOCODIV = 0x00u;

1 PFBE =1uy;

1 FIHSEL =1u;

I

1 /* Confirm the switching status flag. */

1 while (1u == FIHST)

I {

1 /* No operation */
I }

I}

llelse

1K
1 /* No operation */
I}

R20UT5008EJ0120 Rev.1.20 NS Page 76 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01
7. Creating a Sample Project for EES RL78 Type 01

EES RL78 Type 01 includes a sample program to control EEPROM emulation. The compilers which can be
used by EES RL78 Type 01 are a CC-RL compiler, an IAR compiler and a LLVM compiler. Users can create
a sample project using the Integrated Development Environment (IDE) corresponding to each compiler.

The target sample programs differ in each device (e.g. RL78_G23, RL78_G24). This section is explained in
the sample program example for RL78/G23. If you are using another device on the RL78/G23, change the
G23 description to the target device. Section address settings must be changed by referring to the user's
manual for the target device. In addition, Because the flash memory control scheme varies depending on the
target device, the classification macro must be configured in the Integrated Development Environment (IDE).
The setting method is described in “7.1.3.2 The Setting of User Definition Macro”(CC-RL), “7.2.3.2 The
Setting of User Definition Macro”’(IAR) and “7.3.3.2 The Setting of User Definition Macro”(LLVM).

If the RL78/G22 is used, the RL78/G23 sample program is available.

Notes 1: The target Integrated Development Environment (IDE) and the compiler are premised on
using the version for RL78/G2x. Be sure to use them, after confirming that RL78/G2x are
target products.

2: EES RL78 Type 01 uses the RFD RL78 Type 01 to control the data flash memory. However,
it is not included in the EES RL78 Type 01 installer, RFD RL78 Type 01 must be installed
before registering to the project. It describes the RFD RL78 Type 01 files and sections
needed to register the project, however for more information on RFD RL78 Type 01, refer to
the RFD RL78 Type 01 User's Manual.

71 Creating a Project in the Case of Using a CC-RL Compiler

CS+ or e? studio can be used for a RENESAS CC-RL compiler as an IDE. EES RL78 Type 01 and RFD
RL78 Type 01 are registered and built in the project created by the IDE. An example of creating a sample
project in case each IDE is used is shown. Because to understand a CC-RL compiler and each IDE, it is
necessary to refer to the user's manual of each tool product.

R20UT5008EJ0120 Rev.1.20 NS Page 77 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

711 Example of Creating a Sample Project

(1) An example of creating a sample project which used CS+ (IDE)
+ The CS+ starts and from the [Project] menu, select [Create New Project...], the “Create Project” window
will open.
- Select the product of “RL78/G23 (ROM: 128 Kbytes)” - “R7F100GLGxFB(64pin)” as [Using
microcontroller].
- Select "Application(CC-RL)" as [Kind of project].
- [Project name] is temporarily set to "EESRL78T01_PJO1".
- When you click the [Create] button, the new project is created.

Create Project bt

Micracontroller: RL7S w

Uzine microcontraller:

%623 Update...
[g RL78/G23 (ROMIEKE) # | | Product Name:RYF 100GLGxFB

o %5 RLTB/E28 (ROM:128KE) Internal ROM SiZB[KByteS.]ZQS
S RIF 100GLGKF A G40 Internal RAM size[Bytes] 16384

W
Kind of project: Application{Co-RL) ~
Project name: EESEL7STO1_PJ01
Place: G Uzers¥ooonodDocumentz¥G5_Plus_Project w Browse...

Make the project folder

C¥lzers¥ooooo® Documents¥C5_Plus_Project¥EESRLYETO1_PJDI¥EESELTETO1_PJ01 mip)

[] Pasz the file compasition of an existine project ta the new project

Project to be pazzed: b Birowze...

Copy compozition filez in the diverted project folder to a new project folder.

R20UT5008EJ0120 Rev.1.20 NS Page 78 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

(2) An example of creating a sample project which used e? studio (IDE)

* The e? studio starts and from the [File] menu, select [New] — [C/C++ Project], the “Templates for New
C/C++ Project” window will open.

B <2 studio - & studio
File | Edit Source Refactor Mavigate Search Project Renesas Views Run Window Help
| New Alt+5hift+N >| Makefile Project with Existing Code
Open File... | C/C++ Project
[, Open Projects from File System... ™ Project..
Close Ctrl+W Convert to a C/C++ Project (Adds C/C++ Mature)

- Select [Renesas CC-RL C Executable Project] displayed after selection in [Renesas RL78], and press
"next" button.

B8 Mew C/C++ Project O

Templates for New C/C++ Project

All GCC for Renesas RL78 C/C++ Executable Project
Make FE= A C/C++ Executable Project for Renesas RL7S

Renesas DEbUi using the GCC for Renesas RL78 Toolchain.

GCC for Renesas RL78 C/C++ Library Project

FSEE A C/C++ Library Project for Renesas RL78 using
the GCC for Renesas RL7E Toolchain.

Renesas CC-RL C Executable Project

=% A C Executable Project for Renesas RL78 using
the CCRL toolchain.

Renesas CC-RL C Library Project
FE=> A C Library Project for Renesas RL78 using the CCRL toolchain.

® < Back MNext > ‘ Finizh Cancel

* Input "project name" on “New Renesas CC-RL Executable Project” window, and press "next" button.
[Project name] is temporarily set to "EESRL78T01_PJ0O1".

el m] X
New Renesas CC-RL Executable Project —
MNew Renesas CC-RL Executable Project |
Project name:|| EESRL7ETO1_PJO1 |
Use default location
Location: D:\work\02-Project\E2_Studio\workspace\EESRL7ETO1_PJOT Browse...
Create Directery for Project

Choose file swstern: |default

n

n

n
® < Back Mext > Finizh Cancel

R20UT5008EJ0120 Rev.1.20 NS Page 79 of 136
Sep.28.23 RENES

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

- Select the [Target Device] of [Device Settings], and select “RL78 - G23” - “RL78 - G23 64pin” -

“R7F100GLGxFB”.

- It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check
mark to "Create Hardware Debug Configuration" by [Configurations]. And select “E2 Lite(RL78)".

* Press "Finish" button.

Mew Renesas CC-RL Executable Project
Select toolchain, device _debug settings

Toolchain Settings

Language: ®C (OC++
Toolchain: Renesas CCRL -
Toolchain Version: | +1.10.00 -
Manage Toclchains..,
Device Settings
Target Board: |Cu5tom v|
Target Device:l R7F100GLGxFB |@
Unlock Devides..,
Endian: Little

Project Type: Default

Configurations
Create Hardware Debug Configuration
[E2 Lite (RL78) v

[Create Debug Configuration
RL7E Simulator v

[] Create Release Configuration

?\ E < Back i Mext = Cancel

& O x
Device Selection
You can filter devices by regular expression
Search Device
Device RAM ROM Pin RTOS Smart C... Peripher.. *
RL78 - GIM
RL78 - G1P
w RL78- G23
RL78 - G23 30pin
RL78 - G23 32pin
RL78 - G23 36pin
RL78 - G23 40pin
RL78 - G23 44dpin
RL78 - G23 48pin
RL78 - G23 52pin
w RL78 - G23 84pin
RTF100GLFxFA 12 KB 96 KB 64 v X
R7F100GLFxFE 12 KB 96 KB 64 v X
R7F100GLFxLA 12KB 96 KB 64 v X
RYF100GLGxFA 16 KB 128 KB 64 v X
1 6 KB 128 KB 64 v X
R7F100GLGxLA 16 KB 128 KB 64 v X
R7F100GLHxFA 20 KB 182 KB 64 v X
RYF100GLHxFB 20 KB 192 KB 64 v X
RTF100GLHxLA 20 KB 192 KB 64 v X
R7F100GLIxFA 24 KB 256 KB 64 v X v
R20UT5008EJ0120 Rev.1.20 xENES NS Page 80 of 136

Sep.28.23

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.1.2 Example of Registration of Target Folders and Target Files

Using EES RL78 Type 01, when execute EEPROM emulation the example which registers necessary files is
shown. Each folder of a “EESRL78T01” source program file is "include", "source", "userown", and "sample".
As other registration methods, after all the folders of "include", "source”, "userown", and "sample" are
registered, unnecessary files and folders can be removed using the function of "Remove from Project"(CS+)

or [Resource Configuration] — [Exclude from Build] (e? studio).

-} EESRL78T01 PJo1 (Project] v [=5 EESRL78TO1_PJO1
. RTF100GLGxFB (Microcontroller)i njt Includes

o Smart Configurator (Design Tool) (2 generate
¥, CC-RL (Build Tool) v (@ src
-----_‘.:\ RLTE E2 LitE I:DE'bL.Ig TDDP.I v (=, EESRL78T01
- Program Analyzer (Analyze Tool) o include
.) =
—E File = sample
+- |) RFDRL7&TO1 :
: (= source
=1-LL) EESRL7ETO1
5Ll include g
= | & RFDRL78101
I [¢ EESRL78TO1_PJo1.c
4|l source
= [T userown (= HardwareDebug
- EESRL78TO1_PJO1 HardwareDebug.launchi
The registration tree screen of EES (CS+) The registration tree screen of EES (e? studio)

- Registration of the latest I/0O header file(iodefine.h) outputted to target products by IDE
"iodefine.h" is an 1/O header file which CS+ or e? studio outputs to target products. Replacing instead of
"iodefine.h" included in EES RL78 Type 01 is recommended. Registration of target folders and target files
is implemented. Then, a user replaces "iodefine.h" which IDE outputted with "iodefine.h" included in EES
RL78 Type 01.

The folder to which an 1/O header file (iodefine.h) is outputted by IDE :
- CS+ : [Project name] folder
- €2 studio : [Project name]/generate folder
The folder with which a user replaces the "iodefine.h" file :
- CS+ : \[Project name]\EESRL78T01\sample\RL78_G23\EES\CCRL\include
- €2 studio : \[Project name]\src\EESRL78T01\sample\RL78_ G23\EES\CCRL\include

- Exclusion of the file automatically added by the function of IDE.
There are files added automatically in the created project. The same file as these exists also in the
"sample" folder of EES RL78 Type 01. Therefore, using the function of IDE, Select those files from tree
and excludes from a project.

- CS+ : Click the right mouse button for the file of tree. And exclude target file using "Remove from
Project" function. Targets are "cstart.asm, hdwinit.asm, stkinit.asm, main.c, and iodefine.h" in [project
name] folder.

- 2 studio : Clicks the right mouse button for the file of tree. And on the [Settings] screen displayed by
the "Properties"”, put a check mark to [Exclude resource from build] and exclude a target file (target
folder). (Exclusion of a folder is also possible)

Target files are cstart.asm, hdwinit.asm, iodefine.h, and stkinit.asm in a [Project name]/generate folder.

And [Project name] .c ("EESRL78T01_PJ01.c") in a [Project name]/src folder is a target.

R20UT5008EJ0120 Rev.1.20 NS Page 81 of 136
Sep.28.23 RENES

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

(1) Registration the EES RL78 Type 01 target folders and target files.

The folders ("include", "source", "userown", "sample") and source program file which are included in EES

RL78 Type 01 to register are shown below.

in the “include” folder

B[.El include

EI{E 223

"J r_ees.h

U r_ees_compiler.h
"J r_ees_defines.h
"J r_ees_device.h
-.h| r_ees_ memmap.h
IJ r_E'E'S_t_VPE'S-h
"J r_type_defs.h

U r_ees_exrfd_api.h
=] r_ees_sub_api.h

in the “source” folder

B[E SOUrce
i EI[E ees

B r_ees_apic
. &o| r_ees_exrid_api.c

i..&2| r_ees_sub_api.c

Transpose to "iodefine.h"

outputted by CS+ or e? studio.

in the “userown” folder

B[E USEroWn

El[ﬂ include

- "J r_ees_descriptorh
P e "J r_ees_user_types.h
b ‘_:J r_ees_descriptor.c

in the “sample” folder

E[_E sample

E[_E common
B[_E include
E ----- i'J sample_control_ees.h

----- i'J sample_ees_defines.h

- i'J sample_ees_memmap.h

Ef_ﬂ SOUFCE
B[E Bes

. &| sample_control_ees.c
=-[]) RL78_G23
&[0 EES

&l CCRL

B[E !nclude

(2) Registration the RFD RL78 Type 01 target folders and target files.

The folders ("include", "source", "userown") and source program file which are included in RFD RL78

Type 01 to register are shown below.

in the “include” folder

B[_E include
-0 rid
ey

- i'J r_rfd_compiler.h

-] r_rfd_device.h

- "J r_rfd_memmap.h

0| r_rfd_common_api.h

"J r_rfd_cemmon_centrol_apih
.'J r_rfd_commaon_userown.h
-] r_rfd_data_flash_api.h

in the “source” folder

EI[_E source
EI [_E common
. ‘fJ r_rfd_commeon_api.c
‘EJ r_rfd_common_centrol_api.c
&[]} dataflash
b ‘fJ r_rfd_data_flash_api.c

in the “userown” folder

B[E USErown
LB r_rfd_common_userown.c

R20UT5008EJ0120 Rev.1.20 RENESAS

Sep.28.23

Page 82 of 136

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

71.3 Build Tool Settings

Set IDE setting necessary in order to build EES RL78 Type 01 using a CC-RL compiler.

CS+ : Click the right mouse button for the “CC-RL(Build
setting of the build tool in the displayed window.

tool)” in a tree, and select "Property". And set each

e? studio : Click the right mouse button for the project(“EESRL78T01_PJ01") in a tree, and select
"Properties". And set each setting of the build tool in the displayed window.

7.1.3.1 Include Path Settings

+ Setting of the include path on CS+ inputs path in “Common Options” tab.

- Input the Include directory path in the “Path Edit” window displayed by selection of [Frequently Used

Options(for Compile)] - [Additional include paths].

(1) EES RL78 Type 01 include path : »
EESRL78TO1\include e Et |
EESRL78TO1\include\ees EoE el
EESRL78T01\sample\common\include EESRL78T0T¥include
. \“ EESRL78T01¥include¥ees
EESRL78T01\sam pIe\RL78_G23\EES\CCRL\InCIUde EESRL78T01¥sample¥commoniinclude .
EESRL78T01\userowninclude CESAL O WaanleV L8 GESHEESHCALncuce
RFDRL78T01¥include
RFDRL73T01¥include¥rfd
(2) RFD RL78 Type 01 include path
RFDRL78TO0MNinclude Browse...
RFDRL78TO01\include\rfd 1 Pt soreesisent
[Include subfolders automatically
Placeholder:
| Dlarahaldar Wala N

- Setting of the include path on e? studio inputs path in

“Properties” window.

- Input the Include directory path in the window displayed by selection of “C/C++ Build” [Settings] -

“Compiler” [Source].

(1) EES RL78 Type 01 include path

${ProjDirPath}\src\EESRL78T01\include
${ProjDirPath}\src\EESRL78T01\include\ees

${ProjDirPath}\src\EESRL78T01\userown\include

${ProjDirPath}\src\EESRL78T01\sample\common\include
${ProjDirPath}\src\EESRL78T01\sample\RL78 G23\EES\CCRL\include

(2) RFD RL78 Type 01 include path

${ProjDirPath}\src\RFDRL78T01\include
${ProjDirPath}\src\RFDRL78T01\include\rfd

a Properties for EESRL78TO1_PI01

‘n.m-' ter text

Settings

Configuration: | HardwareDebug [Active]

T Tool Settings Toolchain Device . Build Steps Build Artifact i Binary Parsers @ §

alysis T SMS Assembler

tacl

Tool Chain Editer
C/C++ General
Project Natures
Project References
Renesas QF
Run/Debug Settings

$§{ProjDirPath /src/EESRL78TO1/include
${ProjDirPath}/src/EESRLTBTON/include/ees

jDi ample/ includ
§{ProjDirPath}/src/EESRL78TO1/sample/RL78_G23/EES/CCRL/include
------ include

{Proj } 78T
§{ProjDirPath}/src/RFDRL78TO1 /include
{ProjDirPath]/src/RFDRLTETO1

Include files at head of compiling units (-preinclude)

® Linker T

95 Converter ‘

R20UT5008EJ0120 Rev.1.20
Sep.28.23

RENESAS

Page 83 of 136

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.1.3.2 The Setting of User Definition Macro

e On CS+, the macro for flash memory control system classification is defined in "Common Options" tab.

- Define the following macro in the “Text Edit” window displayed by selection of [Frequently Used
Options(for Compile)] - [Macro definition]. Definition macro differs by each device to be used.

Macros defined when using RL78/G23 or RL78/G22:

Text Edit
R_RFD_MCU_FLASH_T01_CATEGORY01 Text
R_RFD_MCU_FLASH_T01_CATEGORY01
Macros defined when using RL78/G24:

R_RFD_MCU_FLASH_T01_CATEGORY02

¢ On e? studio, the macro for flash memory control system classification is defined in “Properties” window.

- Define the following macro in the “Macro Definition (-D)” displayed by selection of “C/C++ Build”

[Settings] — “Compiler” [Source]. Definition macro differs by each device to be used.

Macros defined when using RL78/G23, or RL78/G22:
R_RFD_MCU_FLASH_T01_CATEGORY01

Macros defined when using RL78/G24:
R_RFD_MCU_FLASH_T01_CATEGORY02

Q Properties for EESRL78TO1

Settings
Resource
~v C/C++ Build i Tool Settings
% SMS Assembler Include file directories (-1)
Tool Chain Editor ® Common — i
C/C++ General % Compiler 2{Plo}_D!lPath}/src/EE5RL?8T01/!nclude
Run/Debug Settings ~ {PrajDirPath}/src/EESRL78TO1/include/ees
${ProjDirPathl/src/EESRL78TO1/sample/common/include
 Language ${ProjDirPath}/src/EESRL78TO1/sample/RL78_G23/EES/CCRL/include

2 onea SProjDiPatc/EESRLTSTOuseromnncluce
& Optimization Include files at head of compiling units (-preinclude)
(& Output Code

(# Miscellaneous
(#2 MISRA C Rule Check
(£ User

® Assembler

Macro definition (-D)
R_RFD_MCU_FLASH_TO1_CATEGORYO1

Note : A compile error will be outputted if macro is not defined.

R20UT5008EJ0120 Rev.1.20 NS Page 84 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.1.3.3 Device Item Settings

- Setting of the device Items on CS+ inputs in the “Link Options” tab.

- Setting the [Device] items

Select "Yes (-OCDBG)" in [Set enable/disable on-chip debug by link option].
Note : The example of a setting on condition of on-chip debugging execution.

Input the "85" into [Option byte values for OCD]. (Example of permission of operation for on-chip
debugging)
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",
and "On-chip debug option byte" on the user's manual of a target device. And describe the
set value used with user application.

Select "Yes(Specify address range)(-OCDBG_MONITOR=<Address range>)" in [Set debug monitor
area]. Set "1FEQ0-1FFFF" to [Range of debug monitor areal.

Note : The user needs to input the range of the area which the debugger uses with reference to
description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on a user's manual.

Select "Yes(-USER_OPT_BYTE)" in [Set user option byte].
Set "6EFFES8” to [User option byte value]. (WDT stop, LVD reset mode, HS mode /32MHz [The example
for RL78/G23])
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",
and "User option bytes" on the user's manual of a target device. And describe the set
value used with user application.

4, CC-RL Property - P -
Library
v |Dewvice
Set enable/disable on-chip debug by link option Yes(-OCDBG)
Opticn byte values for OCD [F==] 85
Set debug monitor area Yes(Specify address range)(-DEBUG_MONITOR=<Address range>)
Range of debug monitor area 1FEO0-1FFFF
Set uzer option byte Yes(-USER_OFT_BYTE)
ser option byte valus [Fe2] GEFFES
Control allocation to trace RAM area No
Output Code
List
Variables/functions information
Section
Innut Fila
, Common Optio... ,a."' Compile Dptions_,.»‘.':' Assemble Opti... ,.»:' SMSAszemble... ,- Link Options ~. Hex Output Op... ,a."' I/0 Header Fil ..

R20UT5008EJ0120 Rev.1.20 NS Page 85 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

- Setting of the device Items on e? studio inputs in the “Properties” window.
- Select “C/C++ Build” [Settings] - “Linker” [Device]. And set device items on the displayed screen.

Put in a check mark to [Secure memory area of OCD monitor(-debug_monitor)] in the screen.
Note : The example of a setting on condition of on-chip debugging execution.

Set "1FEO0-1FFFF" to [Memory area(-debug_monitor=<start address>-<end address>)].

Note : The user needs to input the range of the area which the debugger uses with reference to
description of the user's manual for a target device. And please refer to “Memory Spaces
Allocated for Use by the Monitor Program for Debugging” in “Allocation of Memory
Spaces to User Resources” on a user's manual.

Put a check mark to [Set user option byte(-user_opt_byte)].
Set “6EFFES8” to [User option byte value(-user_opt_byte=<value>)]. (WDT stop, LVD reset mode, HS
mode /32MHz [The example for RL78/G23])
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",
and "User option bytes" on the user's manual of a target device. And describe the set
value used with user application.

Put a check mark to [Set enable /disable on-chip debug by link option(-ocdbg)].
Note : The example of a setting on condition of on-chip debugging execution.

Input the "85" into [On-chip debug control value(-ocdbg=<value>)]. (Example of permission of operation
for on-chip debugging)
Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",
and "On-chip debug option byte" on the user's manual of a target device. And describe the
set value used with user application.

Q Properties for EESRL73T01_PJO1

[type fiter text Settings
Resource
Builders
v C/C++ Build Configuration: HardwareDebug [Active | ~ | | Manai

Build Variables
Environment

Tool Chain Editor
C/C++ General
Project Matures
Project References
Renesas GQE
Run/Debug Settings

% Common
3 Compiler
%) Assembler
v B8 Linker
v (2 Input
(# Advanced
(32 List
(# Optimization
Section

Output
@ Miscellanecus

@ User
% Converter

0gging &) ToolSettings Toolchain Device Build Steps Build Artifact Binary Parsers @ Error Parsers
Stack Analysis %5 SMS Assembler Security 1D value (-security_id) |0

[] Reserve working memory for RRM/DMM function (-rrm)

Secure memory area of OCD monitor (-debug_monitor)

Mermory area (-debug_monitor=<start address>-<end address>) |‘IFE00—1FFFF

Set user option byte (-user_opt_byte)

User option byte value (-user_opt_byte=<value>) | BEFFES
Set enable/disable on-chip debug by link option (-ocdbg)

On-chip debug control value (-ocdbg= <values) |35
RAM area without sectien (-self/-ocdtr/-ecdhpi) MNone

Output a warning message when a section is allocated to the RAM area (-selfw/-ocdtrw/-ocdhpiw)
[Check specifications of device (-check_device)
O Suppress checking section allocation that crosses (B4KB-1) boundary (-check_64k_only)

[[] Do not check memory allocation of sections (-no_check_section_layout)

Address range of memory type (-cpu) &
[
R20UT5008EJ0120 Rev.1.20 RENESAS Page 86 of 136

Sep.28.23

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

7.1.3.4 Section Item Settings

- Setting of the section ltems on CS+ inputs in the “Link Options” tab.

- Setting the [Section] items

Set "No" to [Layout sections automatically]. And sections come to be displayed on [Section start address].
Press the "|,,,| " button of the right-hand side which sections are displaying, and a "Section settings"

screen is displayed.

Dewice

Output Code

List

Varniables Hunchons information
w Section

Layout sections automatically

Section start address

Section that outputs external defined symbols to the file
ROM to RAM mapped section

Verify

Message

No

«const text. RLIB._SLIB. textf_constf__dat{..]
Section that outputs extemal defined symbols to the file
ROM to RAM mapped section[£]

- Setting of the section Items on e? studio inputs in the “Properties” window.

- Select “C/C++ Build” [Settings] - “Linker” [Section]. And set section items on the displayed screen.

Remove a check mark to [Layout sections automatically(-auto_section_layout)]. Press the " | .., |" button
of the right-hand side which sections are displaying, and a "Section viewer" screen is displayed.

Q Properties for EESRL7ETO1_PIO1

|t}fpe filter text

Settings
Resource
Builders
~ C/C++ Build Configuration: |HardwareDebug [Active]

Build Variables
Environment

Logging

i Tool Settings Toolchain Device #* Build Steps

* | | Manage Configurations...

Build Artifact Binary Parsers @ Error Parsers

Stack Analysis

Tool Chain Editor
C/C++ General
Project Natures
Project References
Renesas QF
Run/Debug Settings

) SMS Assembler

3 Common

i# Compiler

B3y Assembler

~ BB Linker
~ (2 Input
(# Advanced

3 List
Optimization
@ Device
(% Output
(2 Miscellaneous
@ User

By Converter

Specify execution start address (-entry)

Execution start address (-entry=<symbol=) |_start |

Layout sections automatically (-auto_section_layout)

Sections (-start) | .const,.text,.data,.sdata,.RLIB,.SLIB,.textf,.consil D

R20UT5008EJ0120 Rev.1.20
Sep.28.23

xENESAS Page 87 of 136

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

- Section setting operation for CS+ and e? studio
Set "0x03000" to a top address.

Add the sections defined by "#pragma section" in EES RL78 Type 01 to the program area (code flash
memory) and the RAM area. Refer to "Table 2-10 Sections Used in EES" for the details of each section.

Note : In this description, it is a premise to select a medium model as Memory Model of
Compile Options. (It is the same as the "auto select” in R7TF100GLG)
Copy processing of the sections from ROM to RAM is executed in a cstart.asm file. Refer
to the user's manual of CC-RL for the section name of each program when a "small
model" is selected.

R20UT5008EJ0120 Rev.1.20 NS Page 88 of 136
Sep.28.23 RENES

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

(1) The addition of the sections for EEPROM emulation

= The addition of the sections for EEPROM emulation on CS+

Add sections necessary for code flash memory reprogramming on a "Section Settings" screen. It also
includes a section for the RFD RL78 Type 01.

Add to the program area : RFD_DATA n, RFD_CMN_f, RFD_DF_f, EES CODE_f, SMP_EES f,
EES_CNST_f
Add to the RAM area : .stack_bss, RFD_DATA nR, EES_ VAR n, SMP_VAR n

Section Settings X
fddress Section fidd.. Additional
003000 ronst sections
dext
RLIE Mew Qverlay .. RFD_DATA_n
SLB RFD_CMN_f
tetf
RFD_DF_f
constf — -
dats EES_CODE_f
sdata
RFD_DATA SM P_E ES_f
RFD.OMN.f EES_CNST _f
RFD_DF_{
EES CODE f
SMP_EES f
S .stack_bss
EES CHST_f | —
0=FBFO0 dataR
stack _bes
RFD_DATA_nR
bss — —
RFO_DATA R EES VAR n
EESVARn (& | SMP VAR
SMP VAR — _N
0=FFE20 sdataR Impart...
shes
Export..
el b
Be sure to return [Layout sections automatically] to "Yes", after pressing the "OK" button.
Device
Output Code
List
Variables/functions nformation
v Section
Layout sectionz automatically es(-AUTO SECTION_LAYOUT)
Section start address const, text, RLIB, SLIB, textf, constf, data. sdata, RFD_DATA_n.RFD_CMN_f RFD_DF _f.EES_
Section that outputs external defined symbols to the file Section that outputs external defined symbols to the filz[0]
ROM to RAM mapped section ROM to RAM mapped section[3]
Verify

Press the right-hand side "

" button by [ROM to RAM mapped section], display the "Text Edit" screen,

and add the section for copying to RAM from ROM.

RFD_DATA_n=RFD_DATA_nR

Text Edit ROM to RAM mapped
Text: section (-rom)
data= dataR | .data=.dataR

sdata=sdataR l«— |

.sdata=.sdataR

RFD_DATA n=RFD_DATA_nR

R20UT5008EJ0120 Rev.1.20
Sep.28.23

RENESAS Page 89 of 136

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

« The addition of the sections for EEPROM emulation on e2 studio

Add sections necessary for EEPROM emulation on a "Section Viewer". It also includes a section for the
RFD RL78 Type 01.

Add to the program area : RFD_DATA n, RFD_CMN_f, RFD_DF_f, EES CODE_f, SMP_EES f,
EES_CNST_f
Add to the RAM area : .stack_bss, RFD_DATA nR, EES_ VAR _n, SMP_VAR n

. X Additional
Section Viewer sections
Address Section Name RFD_DATA n
{ (00003000 .const :
i RFD_CMN f
.data RFD_DF f
.sdata
RLIB EES_CODE f
SLIB
ot SMP_EES f
constf Section EES_CNST_f
RFD_DATA_n
RFD_CMN_f / ed
RFD_DF_f Remove Section .StaCk_bSS
EES_CODE_f Move Up
SMP_EES f
EES_CNSTf W
(xOD0FBFO0 dataRt RFD_DATA_nR
T
- // EES VAR n
RFD_DATA_nR SMP_VAR _n
EES VAR n |
SMP_VAR n
x00D0FFE20 sdatak
sbss

Be sure to put a check mark to [Layout sections automatically (-auto_section_layout)], after pressing the

“OK” button.
Resource
Builders ® Tool Settings Toolchain Device # Build Steps Build Artifact Binary Parsers @ Error Parsers
v C/C++ Build ® SMS Assembler Specify execution start address (-entry)
Build Variables % Common Execution start address (-entry=<symbal=) ‘_star‘t ‘
Environment = :
i © Compiler Layout sections automatically (-auto_section_layout)

Logging 1§ Assembler .
Settings « Linker Sections (-start) ‘.const..text.data..sdata‘.RLlB..SLIB..textf..constf.R‘
Stack Analysis # Input
Tool Chain Editor & List

C/C++ General (Optimization

Project Natures Section

Select “C/C++ Build” [Settings] - “Linker” [Output], display the "ROM to RAM mapped section (-rom)"
screen, and add the section for copying to RAM from ROM.

ROM to RAM mapped

section (-rom)

ROM to RAM mapped section (-rom)

.data=.dataR
sdata=.sdataR —| .data=.dataR
RFD_DATA_n=RFD_DATA_nR

.sdata=.sdataR

RFD_DATA n=RFD_DATA_nR

R20UT5008EJ0120 Rev.1.20 NS Page 90 of 136
Sep.28.23 xENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.1.4 Debug Tool Settings

This section describes the contents of connection setting on a target board necessary in order to execute on-
chip debugging. As a debugging tool, it is a premise that E2 Lite is selected. Refer to the user's manual for
each IDE for the details of other debugging tool setting.

On CS+, right-click a mouse by "RL78 simulator (Debug Tool)" [initial setting] of a tree. And select the "RL78
E2 Lite" by "Using Debug Tool" displayed there. And a "RL78 E2 Lite Property" screen is displayed, and
select each tab, and perform debugging tool setting.

On e? studio, right-click a mouse in the target project of a tree. Selection of [Debug As] - [Debug
Configurations...] will display the "Debug Configurations" screen. On the tree of a screen, select the target
project ("EESRL78T01_PJ01 HardwareDebug") of [Renesas GDB Hardware Debugging]. And the displayed
"Debugger” tab performs debugging tool setting.

Note: The power is already supplied to the target board, or when power supply capacity is
insufficient, the emulator including E2 Lite may be unable to supply power to a target
board. Be sure to refer to "the user's manual and Additional Document for User's Manual
(Notes on Connection of RL78)" for the emulator for target devices, and use an emulator.

7.1.41 Setting of Connection with Target Board

= On CS+, set up the connection with target board(via E2 Lite) with "Connect Settings" tab.

- [Connection with Target Board] item

In order to let power supply(Supply voltage : 3.3V) from E2 Lite to a target board, it is necessary to set
"Yes" to [Power target from the emulator (MAX 200mA)].

Praject Tree

Main clock frequency [MHz] IUsing internal clock

Sub clock frequency[kHz] UUsing internal clock
Manitor clock System
v Gonnection with Emulator
(¢ Program rial No
:ﬂ File + | Gonnection with Tareet Board

Power target from the emulator (MAX 200maA) Yes
Supply valtage [W] aa

Security [00000000000000000000
Permit flazh programming Yes
Uze wide voltage mode ‘ez
Eraze flazh ROM when starting Ho
Intemnal ROM/RAM

', Connect Settings 4 Debug Tool Settings 4 Download File Settings | Hook Transaction Settings

R20UT5008EJ0120 Rev.1.20 NS Page 91 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

- On e? studio, set up the connection with target board(via E2 Lite) with "Connection Settings" tab.

- [Connection with Target Board] item
In order to let power supply(Supply Voltage : 3.3V) from E2 Lite to a target board, it is necessary to set
"Yes" to [Power Target From The Emulator (MAX 200mA)].

MName: |EESRL?8T'D1_PJ'D‘I HardwareDebug
Main_ﬁ Startup | &~ Source| [C] Common
Debug hardware: | E2 Lite (RL78) ~ | Target Device: R7F100GLG

GDE Settings Debug Tool Settings

v Clock
Main Clock Frequency[MHz] Using Internal Clock
Sub Clock Frequency[kHz] Using Internal Clock
Monitor Clock System

|+ Connection with Target Board |

Emulator (Autc)
Low voltage OCD board MNo
Power Target From The Emulator (MAX 200ma) Yes
Supply Voltage[V] 3.3
Haot Plug Mo

~ Flash
Current Security D (HEX) 00000000000000000000
Permit Flash Programming Yes
Use Wide Voltage Mode Yes
Erase Flash ROM When Starting Yes

R20UT5008EJ0120 Rev.1.20 xEN ESANS Page 92 of 136

Sep.28.23

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.2 Creating a Project in the Case of Using IAR Compiler

IAR Embedded Workbench can be used for a IAR compiler as an IDE. EES RL78 Type 01 and RFD RL78
Type 01 are registered and built in the project created by the IDE. An example of creating a sample project in
case each IDE is used is shown. Because to understand a IAR compiler and each IDE, it is necessary to
refer to the user's manual of each tool product.

IAR Systems, IAR Embedded Workbench, C-SPY, IAR, and the logotype of IAR Systems are
trademarks or registered trademarks owned by IAR Systems AB.

R20UT5008EJ0120 Rev.1.20 NS Page 93 of 136
Sep.28.23 RENES

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

7.21 Example of Creating a Sample Project

(1) An example of creating a sample project which used IAR Embedded Workbench (IDE)

* The IAR Embedded Workbench starts and from the [Project] menu, select [Create New Project...], the

“Create Project” window will open.

- Select the "C" as [project template].
- When you click the [OK] button, the “Save As” window will open.

Tool chain:

Create New Project

pad

REL¥E

Froject templates:

...... 2y Empty project
B Aem
@ C++

-1 DLib
i [2) Externally buil executable

Description;

Createsz a C project.

Cancel

- Create "EESRL78T01_PJ01" folder temporarily, and move into a folder.

- The Project File name is temporarily set to "EESRL78T01_PJ01".

O savens X
« S <« |AR_Project »| EESRLTBTO1_PJO1 v Search EESRLTETO1_PIO1_ »p
Organize « New folder = v 0
MName Date modified Type
7 Quick access
Ma iterns match your search.
@ OneDrive - Renesas Electroni
[This PC
[_} Network a =

File name{ | EESRL7ETO1PIOT |

Save as type: | Project Files (*.ewp)

» Hide Folders

I Save

Cancel

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS

Page 94 of 136

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

(2) Selection of a target device
- On IAR Embedded Workbench, I click the right mouse button of the project ("EESRL78T01_PJ01 -

Debug") in a tree. When an "Options" is selected, the "Options for node [Project name]" window is

displayed.

Workspace w* 0 X | mainc -
Debug e 'F“
Files . {int maint void)

e RL78T01_P Debug Options...] return 0:
| main.c — !
| B Output o
B Output e

P Rebuild All
Clean
C-STAT Static Analysis ¥
Stop Build
Add ¥
Remove
Rename...

EESRL7ETO] IO Version Control System s | < >

Open Containing Folder...
File Properties...
Set as Active

- Input setting in the [General Options] - [Target] tab of "Options for node [Project name]" window.

- Press " |z, | " button of [Device]. And Select

[Code model] and select "Near" as [Data model].

"RL78 - G23" - "RL78 - R7TF100GLG". Select "Far" as

Options for node "EESRL7STO1_Plo1" RL78-G10 4
RL78 - G11 >
RL78 - G12 »
Category: RL78-G13 »
- RL78 - G13A N
Static Analysis RL78 - G14 ¥
C/C++ Compiler _
Assembler Library Options 2 Stack/Heap (=50 &
Output Converter Target Output Library { RL78-G1A ’
Custom Build Device RL78 - G1C >
Build Actions = RL78 - G1D >
ke | [rL7e - R7F1006LG | - ,
bebugger RL7a- GIF >
COM Port Code model
E1 I VI RL78 - G1G ¥
£ Far RL7G- GIH >
E20 O Use far runtime library calls RL78 - G1K *
E2 Lite / E2 On-board RL7S - G1M 5
EZ-CUBE Data model
£7-CUBE2 RL78 - GIN ¥
MNear w
[ECUBE RL78- G1P >
Simulator . RL7& - G22 >
LS Mear constant location RL78 - G23 > RL78 - RTF100GLG
O Override default addresses 5 RLTE - Gicx S
Mirror ROM 0 w RL78 - H1D 3
RL7E - Hux ¥
RL7& - A ¥
RL78 - B ¥
R20UT5008EJ0120 Rev.1.20 - zENESAS Page 95 of 136

Sep.28.23

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.2.2 Example of Registration of Target Folders and Target Files

This describes an example of file registration required to execute EEPROM emulation.

Instead of registering a folder by IAR Embedded Workbench, select [Add Group] of the [Project] menu, and
add a group. The example into which | add the group of the same structure as the folder for EES RL78 Type
01 and RFD RL78 Type 01, and files are registered is shown.

The following example shows (1) EES RL78 Type 01 and (2) RFD RL78 Type 01 groups added:

5 @EESRL78TO1 PJO1 —
— BRFORL7ETO
=1 BEESRL7ETO1
—= B include
- ==k
—= B sample
I—L,:_| Bl cormron
| l— M include
| I—EI B source
| L— Wices
0 iRL78 G23 B @EESRL78TO1 PJO1 — ___
== MEES Bl EESRL7ATO
L AR 51 B RFORL7STOT
— W include £ Bl include
L — Wsource L Elrid
— -SE'-"":E £ B zource
L — mees |— B common
L1 W uzerown L— &8 dataflash
L — & include L — B uzerown
B Cutput B Output
(1) EES RL78 Type 01 (2) RFD RL78 Type 01

- Exclusion of the file automatically added by the function of IDE.
There are files added automatically in the created project. The same file as these exists also in the
"sample" folder of EES RL78 Type 01. Therefore, using the function of IDE, Select those files from tree
and excludes from a project.
- IAR Embedded Workbench : Clicks the right mouse button for the file of tree. And exclude the target

"main.c" file by "Remove" function.

R20UT5008EJ0120 Rev.1.20 NS Page 96 of 136
Sep.28.23 RENES

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

(1) Registration of the EES RL78 Type 01 files.

The groups ("include", "source”,

userown-,

sample") and source program file which are included in EES

RL78 Type 01 to register are shown below.

in the “include” group

in the “sample” group

—=1 M include

=1 B ees

— [lreesh

— [kl r ees compilerh
— |kl r_eez definesh
— |l r_ees_device h
— |l r_ees_memmaph
— |l r_ees_types.h
— || r_tyvpe_defs h
— |kl r ez apih

— [kl r ees exrid apih
— |l r_ees_sub_apih

= isample
1 W common
|—E_| M include
| I— [l sarnple_control ees k
| I—] zarmple_ees defines k
| L [sarnple_ees memmap ki
l—E_l B source
I—EJ M ces
zample_control ees o
Lo mRL7E.G23
Lo meEES
Lo @R

in the “source” group

I—El M include
| L [l sarmple_config b

& M source
L3 ilees
F ees apic
r ees_exrfd apic
r ees_sub apic

l—El B zource

[_lewel_init .o
rrain.c
option_byte.c

L— 2 sample_linker file.icf

in the “userown” group

i—El Bl Lizerown
|—E| M include
| |— L r_ees descriptor b

r ees descriptor.c

| L bl r ees uzer typesh

(2) Registration of the RFD RL78 Type 01 files

The groups ("include", "source",

Type 01 to register are shown below.

in the “include” group

userown") and source program file which are included in RFD RL78

in the “source” group

=1 B include
£1 W rtd

F— Elrridh

}— r_rfd_cormpiler b

}— r_rfd_device h

}— r_rfd_mermmap kh

}— r_rid_tvpesh

LR r_typedefz h
— k] r_rfd_common_apih
Il r_rfd_commaon_contral_apih
— Il r_rfd_cormon_userown.b
—] r_rfd_data_flazh_apih

2 B source
I—EI B comman
| [r rfd_common_apic
| [v _rfd_common_control_apic
I—E.I B dataflazh
r rfd data flash apic

in the “userown” group

& B userown
r_rfd_common_userawn.c

R20UT5008EJ0120 Rev.1.20
Sep.28.23

RENESAS Page 97 of 136

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

7.2.3 Integrated Development Environment(IDE) Settings

Set IDE setting necessary in order to build EEPROM emulation using an IAR compiler.

IAR Embedded Workbench : Click the right mouse button for the project(*EESRL78T01_PJ01”) in a tree, and

select "Options". And set each setting of the “Category” in the displayed window.

7.2.3.1 Include Path Settings

- Setting of the include path on IAR Embedded Workbench selects "C/C++ Compiler" of "Category", and

inputs path in "Preprocessor" tab.

- Input the Include directory path in the “Edit Include Directories” window displayed by selection of

[Additional include directories: (one per line)].

Options for node "EESRL7ETO1_PJO1"

Category:

General Options
Static Analysis

C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger

E1l

E2

E20

E2 Lite / E2 On-board

EZ-CUBE

IECUBE

Simulator

TK

Factory Settings
[Multi-file Campilation

Discard Unused Publics

Diagnostics ~ MISRA-C:2004 MISRA-C:1998 Encodings _Extra Options
Language 1 Language2 Optimizations Output List

O lgnore standard include directories

Additional include directories: (one per ling
C¥Users¥iooooo¥Documents¥IAR_Project¥EESRL7ETO1_PJOTYEESRLY A Izl

C¥lUsers¥oooa¥Documents¥IAR_Proj ect¥EESRL?BTO1:PJ01 ¥EESRLY
C¥lUsersieocoodDocuments¥lAR_Project¥EESRLTETO1_PJOT¥EESRLT

C¥lUsersieocoodDocuments¥lAR_Project¥EESRLTETO1_PJOT¥EESRLT
C¥lUsersieocoo¥Documents¥lAR_Project¥EESRLTETO1_PJOT¥RFDRLT w

Preinclude file:

Defined symbols: (one per line)

[] Preprocessor output to file
Preserve comments

Generate #line directives

Cancel

Edit Include Directonies

Inciude directony

ChvU zerzhommm D ocumentz\ AR _Projecth EESRLFETO1_PJOTMEESRLYET O \include
U zershmmm D ocumentz\ AR _Projecth EESRLZATO1_PIOTMEESRLYETOT vinchudeees

C: U zershummmm D ocumentz\ AR _ProjecthEESELTAET01_PJOTAEESRLYET O \zamplehcommontinclude

C:5 U zershwmmn\D ocumentz\AR_Project EESRLZATOT_PIOTSEESRLYETOT vsamplehRLYE_GZ2MEESNAR NCIude
C: A sershwmmnemih D ocuments\AR_ProjecthEESRLYETON_PJOTSEESRLZET 01 wuserovwnhinclude

C: A sershummnemi D ocuments\AR_ProjecthEESRLYETO_PJOMSRFDRLTAT 01\include
C:hU zershmmummst D ocumentz\ AR _Projecth EESRLETO01_PJOT\RFDRLYET 01 \include\rfd

<Click to add:

Cancel

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS

Page 98 of 136

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

- The example of directory path setting.
It is the example when the project director is placed in “C:\Users\xxxxxx\Documents\IAR_Project\”.
(1) EES RL78 Type 01 include directories
C:\Users\xxxxxx\Documents\IAR_Project\ EESRL78T01_PJONEESRL78T01\include
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T01_PJONEESRL78T01\include\ees
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T01_PJON\EESRL78T01\sample\common\include
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T01_PJO1\EESRL78T01\sample\RL78_G23\EES\IAR\include
C:\Users\xxxxxx\Documents\IAR_Projec\EESRL78T01_PJO1\EESRL78T01\userown\include

(2) RFD RL78 Type 01 include directories
C:\Users\xxxxxx\Documents\IAR_ProjecttEESRL78T01_PJ01\RFDRL78T0M\include
C:\Users\xxxxxx\Documents\IAR_Project\EESRL78T01_PJO1\RFDRL78TO0N\include\rfd

Note : About the path setting of include directories.

When the project is copied in the case appointed by the absolute path, the setup is needed
again. It is possible to appoint a relative path ($PROJ_DIRS$) so that it can be used, even if
it copies the project. Refer to each reference manual of IAR Embedded Workbench about
how to appoint the relative path.

7.2.3.2 The Setting of User Definition Macro

* On IAR Embedded Workbench, the macro for flash memory control system classification is defined in
"Preprocessor" tab.
- Define the following macro in the column of [Defined symbols: (one per line)]. Definition macro differs by

each device to be used.

Options for node "EESRL78TO1_PJ01" *
el Factory Settings
General Options O kulti-file Compilation
Static Analysis Discard Unused Publics

Accembler Diagnostics =~ MISRA-C:2004 MISRA-C1998 Encodings _Extra Options
Output Converter Language1 Language2 Optimizations Output List
Custom Build
Build Actions O lgnore standard include directories
Linker Additional include directories: (one per ling)
Debugger CUsers¥oocoo¥Documents¥IAR_Project¥EESRLTETO1_PJOTHEESRLY A

COM Part C¥UsersoocootDocuments¥IAR_Project¥EESRLTETO1_PJO1¥EESRLY

E1 C¥Users¥icocoad¥Documents¥IAR_Project¥EESRLTETO_PJOT¥EESRLY

E2 C¥Users¥icocoad¥Documents¥IAR_Project¥EESRLTETO_PJOT¥EESRLY

E20 C:¥Users¥icocoad¥Documents¥IAR_Project¥EESRLTETO_PJO1¥RFDRLT o

E2 Lite / E2 On-board] R

£7-CUBE Preinclude file:

EZ-CUBEZ |

IECUBE . o

Simulator Defined symbols: (one per line)

x® | R_RFD_MCU_FLASH_TO1_CATEGH O Preprocessor output to file

Cancel

Macros defined when using RL78/G23 or RL78/G22:
R_RFD_MCU_FLASH_T01_CATEGORY01
Macros defined when using RL78/G24:

R_RFD_MCU_FLASH_T01_CATEGORY02
Note : A compile error will be outputted if macro is not defined.

R20UT5008EJ0120 Rev.1.20 NS Page 99 of 136
Sep.28.23 RENES

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

7.2.3.3 Debugger Settings

- Select “E2 Lite/E2 On-Board” from [Driver] of [Debugger] — [Setup] tab on the assumption that on-chip

debugging is implemented.

Categony:

Options for node "EESRL7ETO1_PJo1"

General Options

Static Analysis
CfC++ Compiler
Assembler
Output Converter
Custom Build
Build Actions
Linker

I| Debugger

El

E2

E20

EZ-CUBE
IECLBE
Simulator
TK

E2 Lite / E2 On-board

Setup Images Extra Options Plugins

Driver. Bun to:

Factory Settings

| | E2Lite / E2 On-board ~| | main

Setup macros

[Use macro file:

Device description file
[override default:
$TOOLKIT_DIR$¥config¥debugger¥ior78_s3.ddf

Cancel

Note : Refer to each reference manual of IAR Embedded Workbench about the other items to be

set.

R20UT5008EJ0120 Rev.1.20
Sep.28.23

RENESAS

Page 100 of 136

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

7.2.4 Linker Configuration File(.icf) Settings

On IAR Embedded Workbench, Linker configuration file (*. icf) describes link setting executed by building.

Select "Options" by the click right mouse button of project with tree. Select [Linker] by "Category" in the

displayed window, And put a check mark to "Override default” of the [Config] tab. Select Linker configuration

file (*. icf) in the "Open" window of “ | |” button. Select the "sample_linker_file.icf" file prepared for EES

RL78 Type 01.

- sample_linker_file.icf (\sample\RL78_G23\EES\IAR\source\)

Options for node "EESRLTETO1_PJOo1"

source
w

v| Icf Files (*.icf)

File name: | sample_linker_file.icf

Celigmes Factary Settings
General Options
Static Analysis
C/C++ Compiler P : : : :
Assembler de_flne Diagnostics Checksum Encodings Extra Options
Output Converter Config Library Input Optimizations = Advanced Output List
Custom Build Linker configuration file
g remde it
Debugger | TETO1¥sample¥RL78_G23¥EES¥IARYsource¥sample_linker_file.icf
Ei
© open *
« v « EES » IAR » source v O Search source yel
Organize = MNew folder =~ [@
CCRL € Mame "
IAR Im sample_linker_fileicf I
include
project

Cancel

Note : Refer to each reference manual of IAR Embedded Workbench about the descriptive
content of Linker configuration file, and the details of the description method.

R20UT5008EJ0120 Rev.1.20

Sop.26.23 RENESAS

Page 101 of 136

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.2.4.1 Section Settings

The outline of the section added to Linker configuration file (*. icf) currently prepared by EES RL78 Type 01

explained.

Note : Refer to each reference manual of IAR Embedded Workbench about the section setting
method and the detail of functions for Linker configuration file.

(1) The addition of the sections for EES RL78 Type 01.
Add the initial value of each section of EES_CODE, SMP_EES, and EES_CNST to ROM area
(ROM_far).

- The additional section of the ROM _far area:
EES_CODE, SMP_EES, EES CNST

- The additional section of RAM_near area:
EES_VAR, SMP_VAR

(2) The addition of the sections for RFD RL78 Type 01.
Add the initial value of each section of RFD_DATA, RFD_CMN, and RFD_DF to ROM area (ROM_far). It
is necessary to copy RFD_DATA to the section of RAM area (RAM_near).

- The additional section of the ROM_far area (The program and The data for copying to RAM area to be
placed in ROM area):
RFD_DATA_init, RFD_CMN, RFD_DF

- The additional section of RAM_near area (Data copied from ROM area):
RFD_DATA

R20UT5008EJ0120 Rev.1.20 NS Page 102 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.2.4.2 Option Bytes Settings

The Option bytes definition of RL78 is described in Linker configuration file (*. icf) of IAR Embedded
Workbench attachment or the sample_linker_file.icf file prepared for EES RL78 Type 01. The Option Bytes
value for EES RL78 Type 01 is described by the "option_byte.c" file.

Note : Refer to each reference manual of IAR Embedded Workbench about the option bytes
setting method for Linker configuration file.

The example of an Option Bytes definition of Linker configuration file for EES RL78 Type 01 (*. icf).

define block OPT_BYTE with size =4 {R_OPT_BYTE,
ro section .option_byte,
ro section OPTBYTE };

I
place at address mem:0x000CO { block OPT_BYTE };

The example of description of the Option Bytes value in an "option_byte.c" file.

ftrragma location = “OPTEYTE”
| roof const unsigned char option_bytes[4] = {

N=EE, EERARTE AR
F | #/
S +-- Watchdoz timer yf
I operat ion stopped #/
S in HALTSSTOP mode #4
I ++--- Watchdoz timer S
i overf low tine iz #®f
S 217 S AfIL =)
S 47820 ms oy
P o= Watchdog timer ®f
S operation dizabled #/
M- 100% window open #/
e period)
JH mmmmmmee Interval interrupt #/
P iz not uzed e

N=FF, FE R ERRRRRAEET
S i
R +-- YD reset mode #®/

0=E3, /% HS mode 32 MHz %/

085 S OCD: enables on-chip debugzing function #/

- Description of user option byte value:

The value of User option byte (000COH-000C2H) in "option_byte.c" file is "OX6EFFES8".
(WDT stop, LVD reset mode, HS mode /32MHz [The example for RL78/G23])

The value of on-chip debug option byte(000C3H/040C3H) in "option_byte.c" file is “Ox85”.
(The example of enable on-chip debug operation)

Note : Be sure to confirm the contents of "User option byte" of the chapter of "Option Bytes",
and "On-chip debug option byte" by the user's manual of a target device. And describe the
set value used with user application.

R20UT5008EJ0120 Rev.1.20 NS Page 103 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.2.5 On-chip Debug Settings

After executing building of a target project, connect E2 Lite, select [Download and Debug] from [Project]
menu, and start debugging.

7.2.5.1 Example of How to Deal with Connection Errors

Explain the common examples of how to deal with an error which happened by connection in on-chip run

debug. This is the case when an ID code mismatch or power failure occurs.

Note : In cases where a target cannot be connected by other causes, please confirm each
reference manual from [Help] of IAR Embedded Workbench.

When selecting [Download and Debug] and starting debugging, an "E2 Lite hardware setting" screen may be
displayed. The cause may be ID code mismatch or power setting error.

- In the case of the ID code mismatch:

"Cannot verify the ID code." etc. may be displayed as a message. In this case, put a check mark to
"Erase flash before next ID check" of the [ID Code] in an "E2 Lite HardwareSetup" window, and
continue. And the flash memory is erased and debugger may be connected.

- In the case of power setting error:

Initial setting of "Power supply" is "Target". When supplying power supply from E2 Lite, select "3V" by
the pull down menu for "Power supply".

Caution: Be sure not to set "3V"(supply power from E2 Lite), when the power is supplied to the

target.
E2Lite Hardware Setup (RTF100GLG) X
|0 Code Time unit
| poooooooooonoonoonoo |
nsec ~ C |
| [Erase flash before next ID check. | anee
b ain clock Sub clock Fanitor clock
Clock board Clock board (®) System Defaul
(®) Extemnal (®) Extarnal () User
Syztemn Syztem F ail-safe break
|None v| MHz |None v| kHz Wiew setup
Flazh programming Target power off Low-valtage FPower supply
(®) Permit () Pemit (10n B -
() Nat Permit (®) Mot Permit (®) OFf
Pin mazk Peripheral break Target
AT TARGET RESET -
| [& timer) Connect ToOLD -
Ml [JINTERMAL RESET 1B [serial ete.) Mot Connect
temaory map
Start address: Length: Type:
00 Internal ROk v Add
000000 - 0x1FFFF Intemal ROM 128 Kbytes
0xFBFO0 - 0<FFEFF Internal RAbd 16384 bptes
Remaowve
Remove Al

R20UT5008EJ0120 Rev.1.20 NS Page 104 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.3 Creating a Project in the Case of Using LLVM Compiler

e? studio can be used for a LLVM compiler as an IDE. EES RL78 Type 01 and RFD RL78 Type 01 are
registered and built in the project created by the IDE. An example of creating a sample project in case e? studio
is used is shown. Because to understand a LLVM compiler and e? studio, it is necessary to refer to the user's
manual of each tool product.

7.31 Example of Creating a Sample Project

An example of creating a sample project which used e? studio (IDE)
- The e? studio starts and from the [File] menu, select [New] — [C/C++ Project], the “Templates for New
C/C++ Project” window will open.

8} workspace - & studio
FiIeI Edit Navigate Search Project RenesasViews Run Window Help

New Alt+Shift+N » Renesas C/C++ Project >
Open File... & C/C++ Project

2 Open Projects from File System... 1 Project..
Azralll= > 4 Other. Ctrl+N

I il |

- Select [LLVM for Renesas RL78 C/C++ Executable Project] displayed after selection in [Renesas RL78],
and press “Next” button.

&) New C/C++ Project [m] hed

Templates for New C/C++ Project

All GCC for Renesas RL78 C/C++ Executable Project
CMake (EB\ A GC++ Executable Praject for Renesas RL 78 using the GCC for Renesas RL78 Toolchain.
Make

Renesas Debu
W GCC for Renesas RL78 C/C++ Library Project

= A GC+ Library Project for Renesas RL78 using the GCC for Renesas RL78 Toolchain,

LLVM for Renesas RL78 C/C++ Executable Project
fﬁﬁs\ A GFC++ Executable Project for Renesas RL78 using LLVM for Renesas RL 78 Toolchain.

LLVM for Renesas RL78 C/C++ Library Project
CE= A GG+ Library Project for Renesas RL78 using LLVM for Renesas RL 78 Toolchain,

Renesas CC-RL C/C++ Executable Project
=D A GG+ Executable Project for Renesas RL78 using the CCRL toolchain,

RL78

Renesas CC-RL C/C++ Library Project
= A GG+ Library Project for Renesas AL78 using the CCRL toolchain.

@ < Back | Finish Cancel
R20UT5008EJ0120 Rev.1.20 aENESAS Page 105 of 136

Sep.28.23

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

* Input “Project name” on “New LLVM for Renesas RL78 Executable Project” window, and press “Next”

button. [Project name] is temporarily set to “EESRL78T01_PJ01".

e} O ®
LLVM for Renesas RL78 'l,——‘»“
New LLVM for Renesas RL78 Executable Project =
Project name] | EESRL78TO1_Pi01 |
Use default location
Location: C¥Users¥ oooooox ¥e2_studio¥workspace¥EESRL78TOT_PJ(Browse...
Create Directory for Project
Choose file system: [default
[]
[]
[]
® < Back Mext = Finish Cancel
R20UT5008EJ0120 Rev.1.20 Page 106 of 136
KENESAS 9

Sep.28.23

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

- Select the [Target Device] of [Device Settings], and select “RL78 - G23” — “RL78 - G23 64pin” -
“‘R7F100GLGxFB”.

- It is a premise that E2 Lite is selected as a debugging tool and on-chip debugging is executed. Put a check
mark to “Create Hardware Debug Configuration” by [Configurations]. And select “E2 Lite (RL78)”".

- Press “Next” button.

] O X

LLVM for Renesas RL78

Select toolchain, device & debug settings

Toolchain Settings

Language: @®C OC++
Toolchain: LLVM for RL78 w
Toolchain Version: | 10.0.0.202306 ~
Manage Toolchains...
RTOS: None ~
RTOS Version:
Device Settings Configurations
Target Board: |Cus‘[0m ~ ‘ Create Hardware Debug Configuration

| E2 Lite (RLY8) ~

Target Device:l R7F100GLGxFB

[] Create Debug Configuration

RL78 Simulator ~
Endian: |Little

Project Type: |GCC Project Mode [] Create Release Configuration

(:?;‘- e et s | P -

4
& O x
Device Selection
You can filter devices by regular expression
Search Device
Device RAM ROM Pin RTOS Smart C... Peripher.. *
RL7S - GIN
RL78 - G1P
w RL7E- G23
RL78 - G23 30pin
RL78 - G23 32pin
RL78 - 623 36pin
RL78 - G23 40pin
RL78 - G23 44pin
RL78 - G23 48pin
RL78 - G23 52pin
~ RL78 - G23 64pin
R7F100GLFxFA 12 KB 96 KB 64 v X
R7F100GLFxFE 12 KB 96 KB 64 v X
RVF100GLFxLA 12KB 96 KB 64 v X
RTF100GLGxFA 16 KB 128 KB 64 v X
R7F100GLGxFB |16 KB 128KB 64 v X
RTF100GLGxLA 16 KB 128 KB 64 v X
RTF100GLHxFA 20 KB 192 KB 64 v X
R7F100GLHxFE 20 KB 192 KB 64 v X
R7F100GLHxLA 20 KB 192 KB 64 v X
RTF100GLIxFA 24 KB 256 KB 64 v X v
R20UT5008EJ0120 Rev.1.20 xENESAS Page 107 of 136

Sep.28.23

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

+ Uncheck the “Use Smart Configurator”.
+ Press the [Finish] button.

] O X
LLVM for Renesas RL78 ="
|
Select Smart Configurator settings IS
nart Configurat
The e2 studio peripheral smart configurator
automatically generates programs (device drivers) for
MCU peripheral functions (clocks, timers, serial interfaces,
A/D converters, DMA controllers, etc.) based on settings
entered via a graphical user interface (GUI). Functions are
provided as application programming interfaces (APIs)
and are not limited to initialization of peripheral
functions.
7N\
. . wn
User Application 3
Driver and Middleware {___‘;
Driver Code [FIT Modules o)
Configured in GUI B Selected in GUI 2,
and Generated and Imported fma’
c
o
MCU Hardware g
—/
@ < Back Next = | Cancel
R20UT5008EJ0120 Rev.1.20 - zEN ESANS Page 108 of 136

Sep.28.23

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.3.2 Example of Registration of Target Folders and Target Files

Using EES RL78 Type 01, when execute EEPROM emulation the example which registers necessary files is

LI LIS

shown. Each folder of a “EESRL78T01” source program file is “include”, “source”, “userown”, and “sample”.

As other registration methods, after all the folders of “include”, “source”, “userown”, and “sample” are
registered, unnecessary files and folders can be removed using the function of [Resource Configuration] —
[Exclude from Build].
[V 125 EESRL78T01_PJO1
) Includes
(3 generate
v (2 src

v (= EESRL78TO1

(= include

(= sample
(= source
(= userown
(= RFDRL78TO1
tc] EESRL78T01_PJO1.c

(= HardwareDebug
{Z] EESRL78T01_PJ01 HardwareDebug.launch

The registration tree screen of EES RL78 Type01(e? studio)

Note : Register the “generate” folder output by e? studio as necessary.

- Registration of the latest I/O header file outputted to target products by e? studio
“iodefine.h” and “iodefine_ext.h” are an I/O header file which e? studio output to target products. Replacing
instead of “iodefine.h” and “iodefine_ext.h” included in EES RL78 Type 01 is recommended. Registration
of target folders and target files are implemented. Then, a user replaces “iodefine.h” and “iodefine_ext.h”
which IDE outputted with “iodefine.h” and “iodefine_ext.h” included in EES RL78 Type 01.

- Registration of the vector table file outputted to target products by e? studio
“interrupt_handlers.h”, “inthandler.c” and “vects.c” are files that contain vector tables that e? studio outputs
for the target product. Since it depends on the product, please replace “interrupt_handlers.h”,
“‘inthandler.c” and “vects.c” included in EES RL78 Type 01.
When these are replaced, change the option byte values in the “vects.c” file. Refer to “7.3.4 Option Bytes
Settings” for details on setting option byte values.

ENTH LINTH

The folder to which “iodefine.h”, “iodefine_ext.h”, “interrupt_handlers.h”, “inthandler.c” and “vects.c” files
are outputted by e? studio:

- [Project name]/generate

"«

The folder with which a user replaces the “iodefine.h”, “iodefine_ext.h” and “interrupt_handlers.h” files:
- \[Project name]\src\EESRL78T01\sample\RL78_G23\EES\LLVM\include

The folder with which a user replaces the “inthandler.c” and “vects.c” files:
- \[Project name]\src\EESRL78T01\sample\RL78_ G23\EES\LLVM\source

R20UT5008EJ0120 Rev.1.20 NS Page 109 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

» Exclusion of the file automatically added by the function of e? studio.
There are files added automatically in the created project. The same files as these exists also in the
“sample” folder of EES RL78 Type 01. Therefore, using the function of e? studio, select those files from
tree and excludes from a project.

- €2 studio: Clicks the right mouse button for the file of tree. And on the [Settings] screen displayed by
the “Properties”, put a check mark to [Exclude resource from build] and exclude a target file (target
folder). (Exclusion of a folder is also possible)

The “hwinit.c”, “linker_script.Id”, “start.S” and “typedefine.h” in the [project name]/generate folder, and
[project name].c (in this case “EESRL78T01_PJ01.c”) in the [project name]/src folder are not used in EES
RL78 Type 01. Therefore, exclude those from the project.

R20UT5008EJ0120 Rev.1.20 NS Page 110 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

(1) Registration the EES RL78 Type 01 target folders and target files.
The folders (“include”, “source”, “userown”, “sample”) and source program file which are included in EES

’

RL78 Type 01 to register are shown below.

in the “include” folder in the “userown” folder

in the “source” folder

v = source

€| r_ees_sub_apic

»oour

“interrupt_handlers.h”, “i

outputted by e? studio.

Transpose to “iodefine.h”, “iodefine_ext.h”,

nthandler.c” and “vects.c”

* “vects.c” should change the option byte value.

V¥ [include V¥ [userown
v = ees v = include

|b| r_ees_compilerh |h| r_ees_descriptorh
|b| r_ees_definesh [n| r_ees_user_typesh
[b| r_ees_device.h [€) r_ees descriptor.c
o e menmepn in the “sample” folder
m r eesh V= sample
[n| r_type_defsh ¥ = common

[n] r_ees apih v = include

[A r_ees exrfd_apih [h] sample_control_ees.h

[A) r ees_sub_apih |b| sample_ees_defines.h

|h| sample_ees_memmap.h

¥ =5 source
v ees

|| sample_control_ees.c

™ (= ees v = RL78_G23
€| r_ees_apic v (= EES
€| r_ees_exrfd_api.c v = LLIYM

V¥ = include
[n] interrupt_handlers.h

|n| iodefine_ext.h

[n] iodefine.h

|n|] sample_config.h
W

=~ source

<N €] hdwinit.c
€] main.c
|5 starts
|5 stkinit.s

L sample_linker_fileld

(2) Registration the RFD RL78 Type 01 target folders and target files.

LT

The folders (“include”, “source”, “userown”) and source program file which are included in RFD RL78

Type 01 to register are shown below.

in the “include” folder

|£| r_rfd_common_userown.h
[h| r_rfd_data_flash_api.h

in the “source” folder

v = include v = source
V= rfd ¥V [=> common

|b] r_rfd_compilerh €] r_rfd_common_api.c
[n] r_rfd_device.h €] r_rfd_common_control_api.c
[0 r_rfd_memmap.h v (= dataflash
[h) r_rfd_types.h €] r_rfd_data_flash_api.c
[n] r_ridh
[8 r typedefsh in the “userown” folder

|ﬁ| r_rfd_common_api.h v = userown

[b] r_rfd_common_control_api.h €| r_rfd_common_userown.c

R20UT5008EJ0120 Rev.1.20
Sep.28.23

RENESAS

Page 111 of 136

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.3.3 Build Tool Settings

Set e? studio setting necessary in order to build EES RL78 Type 01 using a LLVM compiler.
Click the right mouse button for the project (‘EESRL78T01_PJ01”) in a tree, and select “Properties”. And set

each setting of the build tool in the displayed window.
7.3.3.1 Include Path Settings

- Setting of the include path on e? studio inputs path in “Properties” window.
- Input the include directory path in the window displayed by selection of “C/C++ Build” [Settings] -

“Compiler” [Includes].

(1) EES RL78 Type 01 include path

${ProjDirPath}\src\EESRL78T01\include
${ProjDirPath}\src\EESRL78T01\include\ees
${ProjDirPath}\src\EESRL78T01\sample\commonl\include
${ProjDirPath}\src\EESRL78T01\sample\RL78_G23\EES\LLVM\include
${ProjDirPath}\src\EESRL78T01\userown\include

G Properties for EESRL78T01_PJO1

(2) RFD RL78 Type 01 include path Settings

Builders
v C/C++ Build Configuration: |HardwareDebug [Active]

${ProjDirPath}\src\RFDRL78T01\include L B
${ProjDirPath}\src\RFDRL78T01\include\rfd

Tool Chain Editor
C/C++ General 5 Deb ${Proj DirPathl¥sic¥EESRLTETO ¥include
Project Natures < WE 9 ${Proj DirPath}¥src¥EESRL78T01 ¥include¥ees
Project References (& Warnings ${Proj DirPath}¥src¥EESRL78TO1 ¥sample¥common¥include
Refactoring History 3 SMS Assembler ${ProjDirPath)¥sre¥EESRL78TO1 ¥sample¥R178_G23¥EES¥LLVM¥include
i Library Generator || ${ProjDirPath}¥sic¥EESRL78T01 userown¥include
3l
§

~ | [Manage

&5 Tool Settings 3 Toolchain 3 Device & Build Steps Build Artifact [q} Binary Parsers @

& cru
(2 Optimization

Include fi L3

Renesas QE
~ & Compiler ProjDirPath}¥src¥RFDRL78TO1¥include

Run/Debug Settings . ProjDirPath}¥src¥RFDRLTSTO ¥include¥rid
R20UT5008EJ0120 Rev.1.20 RENESAS Page 112 of 136

Sep.28.23

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

7.3.3.2 The Setting of User Definition Macro

On e? studio, the macro for flash memory control system classification is defined in “Properties” window.

- Define the following macro in the “Macro Defines (-D)” displayed by selection of “C/C++ Build”

[Settings] — “Compiler” [Includes]. Definition macro differs by each device to be used.

Macros defined when using RL78/G23, or RL78/G22:

R_RFD_MCU_FLASH_T01_CATEGORY01

Macros defined when using RL78/G24:

R_RFD_MCU_FLASH_T01_CATEGORY02

& Properties for EESRL78T01_PJO1

type filter text

Resource
Builders
v C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Editor
C/C++ General
Project Natures
Project References
Refactaring History
Renesas QE
Run/Debug Settings

Settings

Configuration: HardwareDebug [Active] v

i Tool Settings &3 Toolchain &3 Device # Build Steps

Manage Configuration:

Build Artifact |ai} Binary Parsers €3 | 4

Ecru
é? Optimization
\,‘:;:3 Debug
\:}"2 Warnings
5 SMS Assembler
3 Library Generator
~ B3 Compiler
5 source
5 Assembler
3 Linker
3 Objcopy
&3 Print Size

& &

]

Include file directories (-1) € 8 &

${ProjDirPath}¥src¥EESRL78TO1¥include

{ProjDirPath}¥src¥EESRLTBTO1¥include¥ees
{ProjDirPath}¥src¥EESRLT8TO1¥sample¥common¥include
{ProjDirPath}¥src¥EESRLT8TO1¥sample¥RL78_G23¥EES¥LLVM¥include
{ProjDirPath}¥src¥EESRLT8TO1¥userown¥include
{ProjDirPath}¥src¥RFDRL78TO1¥include

{

$
$
$
$
$
${ProjDirPath}¥src¥RFDRLTBTO1¥include¥rfd

[6
)
[{

Macro Defines (-D)

R_RFD_MCU_FLASH_T01_CATEGORYO1

Note : A compile error will be outputted if macro is not defined.

R20UT5008EJ0120 Rev.1.20
Sep.28.23

RENESAS

Page 113 of 136

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

7.3.3.3 Linker Script File (.Id) Settings

On LLVM, linker script file (*.1d) describes link setting executed by building. Click the right mouse button for
the project (“EESRL78T01_PJ01”) in a tree, and select “Properties”. And set each setting of the build tool in
the displayed window. Input the include linker script file path in the window displayed by selection of “C/C++

Build” [Settings] — “Linker” [Source].
Input the path to the “sample_linker_file.ld” file contained in the EES RL78 Type 01 sample program.
The linker script file (*.1d) for EES RL78 Type 01 is as follows:

- sample_linker_file.ld (\sample\RL78_G23\EES\LLVM\source\)

Q Properties for EESRL78T01_PJO1

‘type filter text

Resource
Builders
~ C/C++ Build
Build Variables
Environment

Logging

Tool Chain Editor
C/C++ General
Project Natures
Project References
Refactoring History
Renesas QE
Run/Debug Settings

Settings

Configuration: |HardwareDebug [Active]

) Tool Settings | ¥ Toolchain

&y
% Optimization

%3 Device| # Build Steps

~ | | Manage Configurations...

Build Artifact ;p Binary Parsers| €3 Error Parsers

Entry point: ‘-WI,-e_PowerON_Reset

Linker script

% Debug
(2 Warnings

&2 SMS Assembler
) Library Generator
&3 Compiler
&3 Assembler

v 3 Linker

o)
(2 Source

=7 Archives
(2 Miscellaneous

Additional input files

(2 Other |

Note : Refer to each reference manual of LLVM about the descriptive content of linker script file,
and the details of the description method.

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS

Page 114 of 136

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.3.3.4 Section Settings

The setting outline of the section item described to linker script file (*.Id) of EES RL78 Type 01.

(1) The sections for EES RL78 Type 01.
- The section of code to be placed in the ROM area:
EES_CODE, SMP_EES
(EES_ROM_CODE)
- The section of const data to be placed in the ROM area:

EES_CNST
- The section of data to be placed in the RAM area:

EES_VAR, SMP_VAR

(2) The sections for RFD RL78 Type 01.
- The section of code to be placed in the ROM area:
RFD_CMN, RFD_DF
(RFD_ROM_CODE)

- Section of data that is copied from the ROM area to the RAM are:
RFD_DATA
Note: When using the LLVM compiler, the compiler may automatically add subsections with different

names when common processing is detected within the same section. Therefore, the following
sections are added to the description in the sample_linker_file.ld file.

EES_XXXX.* and SMP_XXXX.* (“XXXX” = “CODE”, “EES”, “VAR” or “CNST”)

Examples of subsections that could be added: EES_CODE.outlined-functions (etc.)
Refer to each reference manual of LLVM about the section setting method and the detail of
functions for linker script file.

R20UT5008EJ0120 Rev.1.20 NS Page 115 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.3.4 Option Bytes Settings

“Option Bytes” settings when using the LLVM compiler are set in the “vects.c” file.

Target file name: vects.c
- \[Project name]\src\EESRL78T01\sample\RL78_G23\EES\LLVM\source\vects.c

Description of user option byte value:
In the “vects.c” file provided in the sample program, the option byte value and user option byte value are set
in “Option_Bytes” as follows.

[The example for RL78/G23]
“Ox6e, Oxff, Oxe8, 0x85” (WDT stop, LVD reset mode, HS mode/32MHz, Enable on-chip debug operation)

#include “interrupt_handlers.h”
extern void PowerON_Reset (void);

const unsigned char Option_Bytes[] __ attribute ((section (“.option_bytes”))) = {
0x6e, Oxff, 0xe8, 0x85

h

Note : Be sure to confirm the contents of “User option byte” of the chapter of “Option Bytes”, and
“On-chip debug option byte” by the user's manual of a target device. And describe the set
value used with user application.

R20UT5008EJ0120 Rev.1.20 NS Page 116 of 136
Sep.28.23 RENES

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

7.3.5

Debugger Settings

This section describes the contents of connection setting on a target board necessary in order to execute on-
chip debugging. As a debugging tool, it is a premise that E2 Lite is selected. Refer to the user's manual for
IDE for the details of other debugging tool setting.

On e? studio, right-click a mouse in the target project of a tree. Selection of [Debug As] - [Debug
Configurations...] will display the “Debug Configurations” screen. On the tree of a screen, select the target
project (‘EESRL78T01_PJ01 HardwareDebug”) of [Renesas GDB Hardware Debugging]. And the displayed
“Debugger” tab performs debugging tool setting.

Note: The power is already supplied to the target board, or when power supply capacity is
insufficient, the emulator including E2 Lite may be unable to supply power to a target
board. Be sure to refer to “the user's manual and Additional Document for User’s Manual
(Notes on Connection of RL78)” for the emulator for target devices, and use an emulator.

» On e? studio, set up the connection with target board(via E2 Lite) with “Connection Settings” tab.

- [Connection with Target Board] item
In order to let power supply(Supply Voltage : 3.3V) from E2 Lite to a target board, it is necessary to set
“Yes” to [Power Target From The Emulator (MAX 200mA)].

Mame: |EESRL?STO‘I_PJO‘I HardwareDebug
D Main_&- Startup E Source| [] Common
Debug hardware: | E2 Lite (RL7S) ~ | Target Device: R7F100GLG

GDE Settings Debug Tool Settings

w Clock
Main Clock Frequency[MHz] Using Internal Clock
Sub Clock Frequency[kHz] Using Internal Clock
Monitor Clock System

+ Connection with Target Board l
Emulator (Auto)
Low voltage OCD board No
Power Target From The Emulator (MAX 200mA) Yes
Supply Voltage[V] 33
Hot Plug Mo

~ Flash
Current Security ID (HEX) 00000000000000000000
Permit Flash Pregramming Yes
Use Wide Voltage Mode Yes
Erase Flash ROM When Starting Yes

R20UT5008EJ0120 Rev.1.20 RENESAS Page 117 of 136

Sep.28.23

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.4 Configurations Modify Procedure for Changing Device

When using devices other than those targeted by the EES RL78 Type 01 sample program, ROM, RAM, and
data flash memory sizes are different, so section addresses and some of the sample programs must be
modified. This section describes the procedure to modify and where to modify.

Target device in a “sample” folder:
- “RL78_G23” folder [CATEGORYO01]. Target device for the prepared file:
RL78/G23 (R7F100GLG ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes)
- “RL78_G24” folder [CATEGORY02]. Target device for the prepared file :
RL78/G24 (R7F101GLG ROM: 128 Kbytes, RAM: 12 Kbytes, DF: 4 Kbytes)

To modify the setting values, refer to “Renesas Flash Driver and EEPROM Emulation Software for RL78
Target MCU List - General-Purpose” (here after “Target MCU List”) and change into the set value which
suited the device used.

If the folder name of the target device group exists in the “sample” folder, use that folder. If the folder name
of the target device group does not exist, the folder of the device with the same “CATEGORY” number

described in the target MCU list is used. A “RL78_G22” sample folder does not exist in the case which uses
RL78/G22. Therefore, use “RL78 _(G23” folder for RL78/G23 of the same “CATEGORY01”.

- The extract of a target MCU list

Target MCUs

Code Flash memary User RAM Data F [R-7] [R-8]
MCUGrawp | Size | o yrodaddress | 52 Start/End Address Size | g v Jenp BLockl caTEGORY Target MCU name
(bytes) (bytes) (bytes) =
I 32K | 0x00000- 0x07FFF | 4K | OxFEFODO - 0xFFEFF 2K | ox 16 01 R7F102GxC(x=4,6,7,8,A,B,C,E,F, G
SSS==== | g4k | 0x00000- DxOFFEF | 4K | ODxFEFDO - DxFFEFF 2K | ox 32 01 R7F102GXE(x=4,6,7,8,A,B,C,E F,G)
06K | Dx00000 - 0x17FFF | 12K | oxFCFOO - OxFFEFF sk | ox i 48 01 R7F100GxF(x=A,B,C,E,F,G,J,)
128K | 0xD0000 - Ox1FFFF | 18K | OxFBFOO - DsFFEFF gk | ox | 64 01 R7F100GxG(x=A.B,C.E,F, G, J,L M P)
182K | D«00000 - 0x2FFFF | 20K | OxFAFOO0 - DxFFEFF 8k | ox HEBR 9%6 o R7F100GxH(x=A, B, C,E,F, G, J,LL M, P)
gLraicza | zsex | 0x00000- 0x3FFFF | 24K | DxFOFDO - D5FFEFF gk | ox 128 [} R7F100GxJ(x=A,B,C E F, G,J,L,M,P,8)
384K | Dx000D0 - 0xSFFEF | 32K | OxF7FO0 - OxFFEFF gk | ox 192 01 R7F100GxK(x =F, G, J,L,M, P, S)
512K | Dx00000 - 0x7FFEF | 48K | OxF3F00 - OxFFEFF gk | ox 256 01 R7F100GxL(x=F, G, J,L, M, P, 8)
768K | 0x00000 - 0xBFFFF | 48K | OxF3F00 - OxFFEFF gk | ox 384 01 RTF100GxN(x=F,G,J,L M.P,S)
RL7a/ma4 84K | 0x00000 - 0x0FFEF | 12K | oxFCFOO - 0xFFEFF 4K | ox | 32 02 R7F101GxE(x=6,7,8,A,B,E F,G,J,L)
128K | 0x00000 - Ox1FFEF | 12K | 0xFCFO0 - DxFFEFF 4K | ox | 64 02 R7F101GxG(x=6,7,8,A, B,E F,G,J, L)
R20UT5008EJ0120 Rev.1.20 RENESAS Page 118 of 136

Sep.28.23

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

An example of referencing the Target MCU List and an example of where to modify is shown below.

- Example of reference of the Target MCU List

For example, when modifying the setting value indicated by [R-1] (the start address of RAM) as shown in
the following figure. Here, refer to the setting value of the start address [R-1] (RAM Start Address) of RAM
shown in the Target MCU List and set the value of RL78/G22(R7F102GGE).

Example of where to modify the start address of RAM: RL78/G23(R7F100GxG RAM: 16 Kbytes).

EES GODE f
SMP_EES f
EES_GNST.f
[R-1] —| 0xFBFO0 I datsR
stack_bes

Example of setting the

EES_ CODE f
SMP_EES f
EES_CHST f
=stack bss

start address value of RAM when using RL78/G22 (R7F102GxE RAM: 4 Kbytes).

The value to be set in [R-1] refers to the Target MCU List and sets the start address value of RAM of the

target device.

In the column “Target MCU name” of the Target MCU List, search for the row for R7F102GxE. Next, find
the cell in the [R-1] column that intersects the row of R7F102GxE.

- Example of displaying the “Target MCU List”

Code Flash memory User RAM

Da

a Flash memory.

[R-1] [R-2] [R-3]

R4

[R-5] R-6]

[R-7] R-8]

MCU Group Size

(bytes)

Size
{bytes)

StarvEnd Address StarUEnd Address

Size
(bytes)

Star/End Address

ROM
End Address 1

RAM ROM
‘Start Address

32K | 0x00000 - OxQ7FFF 4K 0xFEFO0 - OxFFEFF

2K

0xF1000 - OXF17FF

End Address 2

OxFEF00 0x07FFF

Data Flash
End Address
OxFITFF

OCD_ROM

Trace_RAM

Target MCU name

END_BLOCK | CATEGORY

0x7E00 0xFF300

16 01 R7F102GxC(x=4,6,7,8,A,B,C,E,F, G)

RLTB/G22

64K | 0x00000 - OxOFFFF 4K 0xFEFO0 - OxFFEFF

2K

0xF1000 - OXF17FF

OxFEFO00 0xOFFFF

OxFITFF

0xFEDO 0xFF300

32 01 RTF102GxE(x=4,6.7,8 A B.C.E.F, G}

Since “OxFEFO00” applies, the setting value of [R-1] is RL78/G22 (R7F102GxE) value “OxFEF00”.

[R-1] [R-2] [R-3] [R-4] [R-5] [R-6] [R-7] [R-8]
RAM ROM ROM Data Flash Target MCU name
Start Address || End Address 1 | End Address 2 | End Address | ©CD-ROM | Trace_RAM [END_BLOCK] CATEGORY
EEE fw:“?:: Ny 7EQQ OyEE200 165 N1 =2 E“n')fwf — 4 5 o A B ~ FE FE (3
OXFEF00 OXOFFFF OXFITFF OXFEDD OXFF300 2 01 RTF102GXE(x=4, 6,7, 8, A. B, C,E, F, G)
R20UT5008EJ0120 Rev.1.20 Page 119 of 136
1 CENESAS 9

Sep.28.23

[R-1] —

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

- Example of where to modify

Points that need to be modified from the RL78/G23 (R7F100GLG) settings are listed from “7.3.1”.
Points that need to be modified are indicated with “[R-x] —”. Refer to the Target MCU List to find the

appropriate [R-x] setting for your device. Enter the searched value in [R-x]. (x =1, 2, 3...)

- Example of modifying section settings (start address of RAM)

(CS+: CC-RL compiler):

Setting for RL78/G23(RAM: 16 Kbytes)

Example: R7F100GxG

Setting for RL78/G22(RAM: 4 Kbytes)

Example: R7F102GGE

Section Settings Section Settings *
Address Section Add.. Address Section Add...
(03000 const (02000 const
text text
.RLIB Mew Qveray... .RLIB Mew Qveray...
SLB SLB
tedf tedf
constf constf
data data
sdata sdata
RFD_DATA_n RFD_DATA_n
RFD_CMN_f RFD_CMN_f
RFD_DF_f RFD_DF_f
EES_CODE_f EES_CODE_f
SMP_EES f SMP_EES f
ES_CNST f FES_CNST_f
(=FBFO0 dataR (=FEFO0 dataR
stack_bss stack_bss
bss bss
RFD_DATA_nR RFD_DATA_nR
EES_VAR_n EES_VAR_n
SMP_VAR_n SMP_VAR_n
OxFFE20 sdataR Import. OxFFE20 sdataR Import.
I - Brport.. I - Brport..
Cancel Help Cancel Help
R20UT5008EJ0120 Rev.1.20 xENESAS Page 120 of 136

Sep.28.23

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.41 CC-RL Compiler Environment Settings

Points of modifies and examples of modifies when using the CC-RL compiler environments (CS+ and e?

studio) are described.
7.41.1 Section Settings

Modify the start address of the RAM area in the section settings.

This example shows the change from RL78/G23 (R7F100GLG) to RL78/G22 (R7F102GGE).
Since the RAM size is changed from 16 Kbytes to 4 Kbytes, modify the start address of RAM from
“OxFBF00” to “OXFEFO00”.

Note: For the start address of the RAM for each product, refer to “R-1" column in the Target MCU List.

- Example of modifying section settings (start address of RAM) in CS+:

Setting for RL78/G23(RAM: 16 Kbytes) Setting for RL78/G22(RAM: 4 Kbytes)
Example: R7TF100GLG Example: R7TF102GGE
Section Settings * Section Settings *
Address Section Add... Address Section Add...
(03000 const (02000 const
text text
.RLIB MNew Qveray... .RLIB MNew Qveray...
SLB SLB
tedf tedf
constf constf
data data
sdata sdata
RFD_DATA_n RFD_DATA_n
RFD_CMN_f RFD_CMN_f
RFD_DF_f RFD_DF_f
EES_CODE_f EES_CODE_f
SMP_EES f SMP_EES f
f ES_CNST f FES_CNST_f
[R-1] — ||eraroo dataR (FEFOD ataR
| stack_bss stack_bss
bss bss
RFD_DATA_nR RFD_DATA_nR
EES_VAR_n EES_VAR_n
SMP_VAR_n SMP_VAR_n
O<FFE20 sdataR Import. 0<FFE20 sdataR Import.
Cancel Help Cancel Help
R20UT5008EJ0120 Rev.1.20 RENESAS Page 121 of 136

Sep.28.23

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

- Example of modifying section settings (start address of RAM) in e? studio:

Setting for RL78/G23(RAM: 16 Kbytes)
Example: R7F100GLG

Setting for RL78/G22(RAM: 4 Kbytes)
Example: R7F102GGE

n % [x
Section Viewer Section Viewer
Address Section Name Address Section Name
- 0x00003000 const 0x00002000 .const
text text
data data
sdata sdata
.RLIB .RLIB
SLIB SLIB
textf Add Section textf Add Section
.constf .constf
cons New Overlay cons New Overlay
RFD_DATA n RFD_DATA n
RED CMN f Remove Section RED CMN f Remove Section
RFD_DF f Move Up RFD_DF_f Move Up
EES_CODE f Move Down EES CODE f Mave Down
SMP_EES_f SMP_EES_f
Import... Import...
EES_CNST _f EES_CNST_f
[R-1]1 — || oxooorero0 Jaarar ST 0X000FEF00 |.dataR Bxport..
.stack_bss .stack_bss
.bss bss
RFD_DATA_nR RFD_DATA_nR
EES_VAR_n EES_VAR_n
SMP_VAR_n SMP_VAR_n
0x000FFE20 sdataR Ox000FFE20 sdataR
sbss .sbss
R20UT5008EJ0120 Rev.1.20
RENESAS Page 122 of 136

Sep.28.23

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.4.1.2 Debug Settings

When using a device other than the one targeted by the sample program, the range of the debug monitor
area when using the debugger is different.

- The start of the “debug monitor area” address sets the address obtained by subtracting “511 bytes
(Ox1FF)” from the end address of the ROM area. If the end address is “Ox1FFFF”, set it to “Ox1FEQQ”.

This example shows the modify from RL78/G23 (R7F100GLG) to RL78/G22 (R7F102GGE).
- Set the debug monitor area range to “OxOFEQOQ - OxOFFFF”.

Note: For information on The start address of the “debug monitor area” for each product, refer to “[R-5]"
column in the Target MCU List.

- To set the debug monitor area in CS+, select the [Device] on the “Link Options” tab.
Setting for RL78/G23 (ROM: 128 Kbytes) Example: R7F100GLG

4, CC-RL Property

v Device
Set enable/disable on-chip debug by link opt Yes(-OCDBG)
Option byte values for OCD [FEx] 85
Set debug monitor area = eCi range)(-DEBUG_MONITOR=<Address range>)

Range of debug monitor area 1FEDO-1FFFF < [R-5]

Set user option byte Yes-USER_OPT_BYTE)
Iser optien byte valus =] BEFFES
Caontrol allocation to trace RAM area No

Range of debug monitor area

Specifies the range of the debug monitor ares in the format of "<start address>-<end address>". The specifizble address range is from 0 to FFFFF.
Specifies “«start address>-<end address>" in hexadecimal without (. For details about this option, refer to the manual.

Thiz option corresponds to the -DEEUG_MONITOR option of the rlink command.

\ Commaon Options ,f Compile Options ,f AssembleOptions ,f SMS5 Assemble Options | Link Options /| Hex Output Options ,{ I

Setting for RL78/G22 (ROM: 64 Kbytes) Example: R7F102GGE

4, CC-RL Property

w Device
Set enable/disable on-chip debug by link opt Yes(-OCDEG)
Option byte values for OCD 85
Set debug monitor area es(Specify address range)(-DEBUG_MONITOR=<Address range>)
Range of debug monitor area
Set user option byte Yes(-USER_OPT_BYTE)
|User option byte valus GEFFES
Control allecation to trace RAM area No

Range of debug monitor area

Specifies the range of the debug moniter area in the format of "<start address=-<end address>". The specifisble address range is from 0 to FFFFF.
Specifies “<start address>-<end address>" in hexadecimal without Ox. For details about this option, refer to the manual.

This option corresponds to the -DEBUG_MONITOR option of the rlink command.

\ Common Options ;(Compile Options ,(AssembleOptions ;(5MS Assemble Options Link Options / Hex Output Options ,(1]

R20UT5008EJ0120 Rev.1.20 NS Page 123 of 136
Sep.28.23 xENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

- To set the debug monitor area in e? studio, select the [Device] in the “Linker”.
Setting for RL78/G23 (ROM: 128 Kbytes) Example: R7TF100GLG

ﬂ Properties for EESRL78T01_PJO1
type filter text settings
Resource
Builders Configuration: HardwareDebug [Active] ~ | Manage
~ C/C++ Build
Build Variables i
Environment & Tool Settings Toolchain Device # Build Steps Build Artifact Binary Parsers @ Error Parsers
Logging B SMS Assembler Security 1D value (-security_id) 0
Settings
d i & Common] Reserve working memory for RRM/DMM function (-rrm)
Stack Analysis % Compiler
Tool Chain Editor ® Assembler Start address area (-rrm=<valug>)
C/C++ General « ® Linker Secure memory area of OCD monitor (-debug_monitor)
Project Natures Input Memory area (-debug_monitor=<start address>- <end address>| 1FEQO-1FFFF I «— [R-5]
Project References 2 List Set user option byte (-user_opt_byte)
Renesas QF # Optimization ; B
. User option byte value (-user_opt_byte=<value>) 6EFFES
Run/Debug Settings 2 Section
8 Device Set enable/disable on-chip debug by link option (-ocdbg)
(® Output On-chip debug control value (-ocdbg=<value>) ‘85
(% Miscellaneous RAM area without section (-self/-ocdtr/-ocdhpi) None
A 1 lear
Setting for RL78/G22 (ROM: 64 Kbytes) Example: R7TF102GGE
ﬁ Properties for EESRL78T01_PJO1
type filter text Settings
Resource
Builders Configuration: HardwareDebug [Active | ~ | |Manage
v CfC++ Build
Build Variables 5
Environment ® Tool Settings Toolchain Device # Build Steps Build Artifact Binary Parsers @ Error Parsers
Logging ® SMS Assembler Security ID value (-security_id) 0
Settings
d . & Common] Reserve working memaory for RRM/DMM function (-rrm)
Stack Analysis % Compiler

Tool Chain Editor Start address area (-rrm=<valug>)

% Assembler

C/C++ General « & Linker Secure memory area of OCD monitor (-debug_monitor)
Project Natures & Input Memory area (-debug_monitor=<start address>-<end address>i ‘ OFEOD-QFFFF I
Project References 2 List Set user option byte (-user_opt_byte)
Renesas QF (2 Optimization . _

- User option byte value (-user_opt_byte=<value=) 6EFFES
Run/Debug Settings % Section

Set enable/disable on-chip debug by link option (-ocdbg)

Device

& Output On-chip debug control value (-ocdbg=<value=) ‘85
(& Miscellaneous RAM area without section (-self/-ocdtr/-ocdhpi) None
B | lear

R20UT5008EJ0120 Rev.1.20 R nS Page 124 of 136
Sep.28.23 ENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.4.2 IAR Compiler Environment Settings

Points of modifies and examples of modifies when using the IAR compiler environment (Embedded
Workbench) is described.

7.4.21 Setting Up Header Files for Target Device

The “main.c” and “low_level_init.c” provided with EES RL78 Type 01 includes the header files for the target
device “RL78/G23: R7TF100GLG”. When using other RL78/G23 products or RL78/G22 products, the included

header file must be changed to the header file for the device used.

- For RL78/G23(R7F100GLG):
<main.c>
#include "ior7f100glg.h"

<low_level_init.c>

#include "ior7f100glg.h"
#include "ior7f100glg_ext.h"

- Example for RL78/G22 (R7F102GGE):
<main.c>
#include "ior7f102gge.h"

<low_level_init.c>

#include "ior7f102gge.h"
#include "ior7f102gge_ext.h"

Note: For the device type name of the product, refer to “Target MCU name” column in the Target MCU
List.

7.4.2.2 Linker Configuration File Settings

In the sample program “RL78_G23” folder provided by EES RL78 Type 01, The sections (ROM, RAM, and
Data flash range) for RL78/G23 (R7F100GLG) are set.

When using other RL78/G23 products or RL78/G22 products, modify the contents of the sample linker file
“sample_linker _file.icf’ provided for the RL78/G23 of EES RL78 Type 01, because the range of the section
settings, and “TraceRAM area” and “debug monitor area” when using the debugger are different.

Target file name: sample_linker_file.icf

This example shows the modify from RL78/G23 (R7F100GLG) to RL78/G22 (R7F102GGE).
- Modify the ROM area to the range of 64 Kbytes [0x00000 - OxOFFFF]
- Modify the start address to “OxFEF00” because the RAM area is 4 Kbytes [0XOFEFO0O - OXOFFEFF]
- Modify the end address to “OxF17FF” because the data flash area is 2 Kbytes [0xOF1000 - OxOF17FF]

R20UT5008EJ0120 Rev.1.20 NS Page 125 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

(1) Section Settings

Setting for RL78/G23 (ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes) Example: R7TF100GLG

define region SADDR = mem:[from OxFFE20 to OXFFEDF];

define region VECTOR = mem:[from 0x00000 to 0x0007F];
define region CALLT = mem:[from 0x00080 to O0xO00BF];

define region ROM_near = mem:[from 0x000D8 to |[0xOFFFF]; <« [R-2]
define region ROM_far = mem:[from 0x000D8 to 0xOFFFF] | mem:[from 0x10000 to 0x1FFFF]; < [R-2], [R-3] Note1
define region ROM_huge = mem:[from 0x000D8 to [0x1FFFF[]; < [R-2] or [R-3] Note2

define region RAM_near = mem:[from OxFBF0OQ|to OXFFE1F]; « [R-1]

define region RAM_far = mem:[from [OxFBFOQ|to OXFFE1F];, <« [R-1]
define region RAM_huge = mem:[from [0xFBF00| to OXFFE1F];, « [R-1]

define region EEPROM = mem:[from 0xF1000 to OxF2FFF|; « [R-4]

Notes 1: If the ROM size is larger than 64 Kbytes, the description must be changed as the ROM size

increases. For details, please refer to “Examples of ROM_far” on the next page.

2: Sets the value [R-3] when there is an address value in [R-3] on the Target MCU List. In the

case of “-”, set the value of [R-2].

-

Setting for RL78/G22 (ROM: 64 Kbytes, RAM: 4 Kbytes, DF: 2 Kbytes) Example: R7F102GGE

define region ROM_near = mem:[from 0x000D8 to OxOFFFFT;
define region ROM_far = mem:[from 0x000D8 to OXOFFFFT];
define region ROM_huge = mem:[from 0x000D8 to OxOFFFF];
define region SADDR = mem:[from OxFFE20 to OxFFEDF];
define region RAM_near = mem:[from OxFEFO0O to OXFFE1F];
define region RAM_far = mem:[from OxFEFO0O to OXFFE1F];
define region RAM_huge = mem:[from OxFEFO0O to OxFFE1F];
define region VECTOR = mem:[from 0x00000 to 0x0007F];
define region CALLT = mem:[from 0x00080 to 0x000BF];
define region EEPROM = mem:[from OxF1000 to OxF17FF];

R20UT5008EJ0120 Rev.1.20 NS
Sep.28.23 RENES

Page

126 of 136

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

- Examples of ROM_far
The following is an example of entries in ROM_far for each ROM size. Refer to the row with the same

ROM size as the target device. Colored areas indicate values for [R-2] or [R-3].

When ROM size is 64 Kbytes or less ([R-3] is “-").

ROM [R-2] Value { mem:[from 0x000D8 to [R-2]];

32 Kbytes | OxO7FFF | mem:[from 0x000D8 to 0x07FFF];

64 Kbytes | OXOFFFF mem:[from 0x000D8 to OxOFFFFTJ;

When ROM size exceeds 64 Kbytes ([R-3] is not “-”).

mem:[from 0x000D8 to [R-2] | mem:[from 0x10000 to Ox1FFFF] | ...Omitted...

ROM [R-3] Value
| mem:[from 0xX0000 to [R-3]];

96 Kbytes | 0x17FFF mem:[from 0x000D8 to 0xOFFFF] | mem:[from 0x10000 to Ox17FFF];

128 Kbytes | OX1FFFF mem:[from 0x000D8 to OxOFFFF] | mem:[from 0x10000 to Ox1FFFF];

192 Kbytes | Ox2FFFF mem:[from 0x000D8 to 0xOFFFF] | mem:[from 0x10000 to Ox1FFFF]
| mem:[from 0x20000 to Ox2FFFF];

256 Kbytes | Ox3FFFF mem:[from 0x000D8 to 0xOFFFF] | mem:[from 0x10000 to Ox1FFFF]
| mem:[from 0x20000 to Ox2FFFF] | mem:[from 0x30000 to Ox3FFFF];

384 Kbytes | Ox5FFFF mem:[from 0x000D8 to 0xOFFFF] | mem:[from 0x10000 to Ox1FFFF]
| mem:[from 0x20000 to Ox2FFFF] | mem:[from 0x30000 to Ox3FFFF]
| mem:[from 0x40000 to Ox4FFFF] | mem:[from 0x50000 to Ox5FFFFT;

512 Kbytes | Ox7FFFF mem:[from 0x000D8 to OxOFFFF] | mem:[from 0x10000 to Ox1FFFF]

| mem:[from 0x20000 to 0x2FFFF] | mem:[from 0x30000 to Ox3FFFF]
| mem:[from 0x40000 to Ox4FFFF] | mem:[from 0x50000 to Ox5FFFF]
| mem:[from 0x60000 to Ox6FFFF] | mem:[from 0x70000 to Ox7FFFF];

768 Kbytes | OXBFFFF mem:[from 0x000D8 to 0xOFFFF] | mem:[from 0x10000 to Ox1FFFF]
| mem:[from 0x20000 to Ox2FFFF] | ...Omitted...
| mem:[from 0xA0000 to OXAFFFF] | mem:[from 0xB000O to OxBFFFF];

R20UT5008EJ0120 Rev.1.20 NS Page 127 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

(2) Debug Settings

- The start of the “debug monitor area” address sets the address obtained by subtracting “511 bytes
(Ox1FF)” from the end address of the ROM area. If the end address is “Ox1FFFF”, set “Ox1FEQ0Q”.

- The start address of the “TraceRAM area” sets the address obtained by adding “1 Kbyte (0x400)” to the
start address of the RAM area. If the start address is “OxFBF00”, set “OxFC300”.

This example shows a modify from RL78/G23 (R7F100GLG) to RL78/G22 (R7F102GGE).
- Modify the “debug monitor area” range to [from OxOFEOQO size 0x0200]
- Modify the “TraceRAM area” range to [from 0xFF300 size 0x0400]

The point where modifications to the “TraceRAM area” and “debug monitor area” when using the debugger

are to be implemented.

Setting for RL78/G23 (ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes) Example: R7TF100GLG

if (isdefinedsymbol(_ RESERVE_OCD_ROM))

if (__ RESERVE_OCD_ROM == 1)
{
reserve region "OCD ROM area" = mem:[from [0x1FEQQ)] size 0x0200]; < [R-5]

}
}

I
| Omitted

I
if (isdefinedsymbol(__RESERVE_OCD_TRACE_RAM))
if (_ RESERVE_OCD_TRACE_RAM == 1)

{
reserve region "OCD Trace RAM" = mem:[from [0xFC300| size 0x0400]; < [R-6]

D

}
Setting for RL78/G22 (ROM: 64 Kbytes, RAM: 4 Kbytes, DF: 2 Kbytes) Example: R7F102GGE

if (isdefinedsymbol(_ RESERVE_OCD_ROM))
{
if (__RESERVE_OCD_ROM == 1)
{
reserve region "OCD ROM area" = mem:[from 0xOFEOQO size 0x0200];

}
}

I
| Omitted
I
if (isdefinedsymbol(__ RESERVE_OCD_TRACE_RAM))

if (__RESERVE_OCD_TRACE_RAM == 1)
{
reserve region "OCD Trace RAM" = mem:[from 0xFF300 size 0x0400];
}
}

R20UT5008EJ0120 Rev.1.20 NS Page 128 of 136
Sep.28.23 RENES

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

7.4.3 LLVM Compiler Environment Settings

Points of modifies and examples of modifies when using the LLVM compiler environment (e? studio) is
described.

7.4.3.1 Linker Script File Settings

In the sample program “RL78_G23” folder provided by EES RL78 Type 01, The sections (ROM, RAM, and
Data flash range) for RL78/G23 (R7F100GLG) are set.

When using other RL78/G23 products or RL78/G22 products, modify the contents of the sample linker script
file “sample_linker_file.ld” provided for the RL78/G23 of EES RL78 Type 01, because the range of the
section settings, “TraceRAM area” and “debug monitor area (OCDROM)” when using the debugger are

different.

The following shows the modified part in red text. Refer to the “Target MCU List” and modify the setting
values for the target device.

Target file name: sample_linker _file.Ild

This example shows the modify from RL78/G23 (R7F100GLG) to RL78/G22 (R7F102GGE).

- The start address of the OCDROM (debug monitor area) is set to the address obtained by subtracting “511
bytes (0x1FF)” from the end address of the ROM area. If the end address of the ROM area is “OXFFFF”, set
the ORIGIN of the OCDROM to “0xFEQ00” [R-5].

- The size of the ROM area is the area from “0xD8” to the start address of the OCDROM. If the OCDROM
start address is “OxFEQ0”, set the ROM LENGTH to “64808”, which is the decimal value obtained by
subtracting “OxD8” from the OCDROM start address “OxFE00”.

- The start address and size of “MIRROR (mirror area)” differs depending on the device. For RL78/G22
(R7F100GGE), set “0xF2000”, the start address of the mirror area, to the ORIGIN of the MIRROR. For the
LENGTH, set “52992”, the decimal value from the start address “0xF2000” to the end address “OxFEEFF”

of the mirror area.
For more information about the “Mirror area”, please refer to the hardware manual of the device.

- Set the start address of the RAM area “OxFEF00” [R-1] to ORIGIN in the RAM area, and set the LENGTH
to “4096”, which is 4 KB in decimal.

- “TRACERAM” area uses an area of 1024 bytes from the address obtained by adding 1024 bytes to the
start address of RAM, so set the ORIGIN to “OxFF300” [R-6]. Also, since the trace function may not be
used or may not be available for some devices, please refer to the hardware manual of the device for
details on the TRACERAM area.

Note: The trace function is not available using RL78/G22. The above is described as a configuration example,

but is commented out so that the target line is not compiled.

R20UT5008EJ0120 Rev.1.20 NS Page 129 of 136
Sep.28.23 RENES

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

(1) MEMORY setting
Setting for RL78/G23 (ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes) Example: R7F100GLG

MEMORY

{
VEC : ORIGIN = 0x0, LENGTH = 4
IVEC : ORIGIN = 0x4, LENGTH = 188
CALLTO : ORIGIN = 0x80, LENGTH = 0x40
OPT : ORIGIN = 0xCO, LENGTH = 4
SEC_ID : ORIGIN = 0xC4, LENGTH = 10
OCDSTAD : ORIGIN = 0xCE, LENGTH = 10
OCDROM : ORIGIN =[0x1FEQ0], LENGTH = 512 < [R-5]
ROM : ORIGIN = 0xD8, LENGTH =
MIRROR : ORIGIN = [0xF3000|, LENGTH =

SADDR : ORIGIN = 0xffe20, LENGTH = 0x000a0

RAM : ORIGIN = [0xFBF00|, LENGTH = {16384 < [R-1]

TRACERAM : ORIGIN =|0xFC300, LENGTH = 1024 < [R-6]

Dl

Setting for RL78/G22 (ROM: 64 Kbytes, RAM: 4 Kbytes, DF: 2 Kbytes) Example: R7F102GGE

MEMORY

{
VEC : ORIGIN = 0x0, LENGTH =4
IVEC : ORIGIN = 0x4, LENGTH = 188
CALLTO : ORIGIN = 0x80, LENGTH = 0x40
OPT : ORIGIN = 0xCO, LENGTH =4
SEC_ID : ORIGIN = 0xC4, LENGTH =10
OCDSTAD : ORIGIN = 0xCE, LENGTH =10
OCDROM : ORIGIN = 0xFEOO, LENGTH = 512
ROM : ORIGIN = 0xD8, LENGTH = 64808
MIRROR : ORIGIN = 0xF2000, LENGTH = 52992
SADDR : ORIGIN = 0xffe20, LENGTH = 0x000a0
RAM : ORIGIN = 0xFEF00, LENGTH = 4096

/* TRACERAM : ORIGIN = 0xFF300, LENGTH = 1024 */

Note: The RL78/G22 is not included in compilation because the trace function cannot be used, but only

the value should be modified on devices that support the trace function.

R20UT5008EJ0120 Rev.1.20 RENESAS

Sep.28.23

Page 130 of 136

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

(2) Set the start address of the RAM area
Setting for RL78/G23 (ROM: 128 Kbytes, RAM: 16 Kbytes, DF: 8 Kbytes) Example: R7F100GLG

.data : AT(__mdata)
{

. = ALIGN(2);

PROVIDE (__datastart = .);

__data=

*(.data)

*(.data.”)

. = ALIGN(2);

*(*_n)*/
__edata =
} >RAM

*INPUT_SECTION_FLAGS(ISHF_EXECINSTR,SHF_WRITE,SHF_ALLOC)

< [R1]

&

Setting for RL78/G22 (ROM: 64 Kbytes, RAM: 4 Kbytes, DF: 2 Kbytes) Example: R7TF102GGE

.data OxFEFQO : AT(__mdata)
{

. = ALIGN(2);

PROVIDE (__datastart = .);

__data=

*(.data)

(.data.)

. = ALIGN(2);

*(*_n)*/
__edata=;
} >RAM

/INPUT_SECTION_FLAGS(ISHF_EXECINSTR,SHF_WRITE,SHF_ALLOC)

R20UT5008EJ0120 Rev.1.20
Sep.28.23

RENESAS Page 131 of 136

EES RL78 Type 01 7. Creating a Sample Project for EES RL78 Type 01

744 Modifying the Sample Program (Common to CC-RL, IAR and LLVM Compilers)

7.4.41 Modifying the Number of Data Flash Memories Used for EES Block

The number of blocks of flash memory differs between RL78/G23 and RL78/G22, which is targeted by the
EES RL78 Type01 sample program folder “RL78_G23". Therefore, to use the number of EEPROM

emulation block at least 3 blocks (recommended), the EES block size must be modified to 512 bytes.

Modify the number of data flash memory used for the EES block of RL78/G22 in the “r_ees_descriptor.h” file.
Modify the EES block size from 4u (1024 bytes) to 2u (512 bytes).

Target file name: r_ees_descriptor.h

Setting for RL78/G23 (DF: 8 Kbytes) Example: R7TF100GLG

/* Specifies the number of physical data flash blocks per one virtual block */
#define R_EES_EXRFD_VALUE_UO08_PHYSICAL_BLOCKS_PER_VIRTUAL_BLOCK (4u)

&

Setting for RL78/G22 (DF: 2 Kbytes) Example: R7TF102GGE

[* Specifies the number of physical data flash blocks per one virtual block */
#define R_EES_EXRFD_VALUE_U08 PHYSICAL BLOCKS PER VIRTUAL BLOCK (2u)

R20UT5008EJ0120 Rev.1.20 NS Page 132 of 136
Sep.28.23 RENES

EES RL78 Type 01

7. Creating a Sample Project for EES RL78 Type 01

7.4.4.2 Data Resizing for Each Identifier (data ID)

When the EES block size is modified to 512 bytes, Modify the data size of “type_Z" in the

“r_ees_user_types.h” file because the total data will exceed the recommended size (251 bytes).

For details of the recommended size, Refer to “4.1 Number of Stored User Data Items and Total User Data

Size”.

Target file name: r_ees_user_types.h

Setting for RL78/G23 (DF: 8 Kbytes) Example: R7TF100GLG

typedef uint8_t type A[2];
typedef uint8_t type B[3];
typedef uint8 t type C[4];
typedef uint8 t type D[5];
typedef uint8 t type E[6];
typedef uint8 t type F[10];
typedef uint8_t type_ X[20];
typedef uint8_ t type Z[255];

D

Setting for RL78/G22 (DF: 2 Kbytes) Example: R7TF102GGE

typedef uint8 t type A[Z];
typedef uint8 t type BI[3];
typedef uint8_t type_C[4];
typedef uint8 t type D[5];
typedef uint8 t type E[6];
typedef uint8 t type F[10];
typedef uint8_t type X[20];
typedef uint8_t type Z[30];

R20UT5008EJ0120 Rev.1.20
Sep.28.23

LENESAS

Page 133 of 136

EES RL78 Type 01

8. Revision History

8. Revision History

8.1 Major Modifications in this Revision
Description
Rev. Date
Page Summary
1.00 Jan.12.22 - Newly created.
1.01 Dec.28.22 - Add support of RL78/G22.
1.10 Apr.28.23 Add support of RL78/G24.
Added “7.1.3.2 The Setting of User Definition Macro”.
i Added “7.2.3.2 The Setting of User Definition Macro”.
Added “7.3 Configurations Modify Procedure for Changing Device”.
1.20 Sep.28.23 - Add support of LLVM compiler
105 Added “7.3 Creating a Project in the Case of Using LLVM Compiler”.
129 Added “7.4.3 LLVM Compiler Environment Settings”.

R20UT5008EJ0120 Rev.1.20

Sep.28.23

RENESAS Page 134 of 136

EEPROM Emulation Software RL78 Type 01 User's Manual

Publication Date: Rev.1.20 Sep. 28. 23

Published by: Renesas Electronics Corporation

EEPROM Emulation Software
RL78 Type 01

LENESANS

Renesas Electronics Corporation R01UT5008EJ0120

	Cover
	Notice
	General Precautions in the Handling of Microprocessing Unit and Microcontroller UnitProducts
	How to Use This Manual
	Table of Contents
	Abbreviations
	Terminology
	1. Overview
	1.1 Outline
	1.1.1 Purpose

	1.2 Contents
	1.3 Features
	1.4 Operating Environment
	1.5 Points for Caution
	1.6 C Compiler Definitions

	2. System Configuration
	2.1 System Configuration
	2.2 EES Architecture
	2.2.1 EES Block
	2.2.2 EES Pool

	2.3 File Structure
	2.3.1 Folder Structure
	2.3.2 List of Files
	2.3.2.1 List of Source Files
	2.3.2.2 Header File List of Header Files

	2.4 Resources of RL78/G2x
	2.4.1 Memory Map
	2.4.2 Allocation of Blocks
	2.4.3 Flash Operation Mode

	2.5 Resources Used in EES RL78 Type 01
	2.5.1 Sections Used in EES RL78 Type 01
	2.5.2 Software Resources

	3. EEPROM Emulation
	3.1 Specifications of EEPROM Emulation
	3.2 Outline of Functions
	3.3 EES Pool
	3.3.1 EES Pool State
	3.3.2 Structure of EES Block
	3.3.3 EES Block Header
	3.3.4 Structure of Stored Data
	3.3.5 EES Block Overview

	4. Using EEPROM Emulation
	4.1 Number of Stored User Data Items and Total User Data Size
	4.2 Initial Values to be Set by User

	5. User Interface
	5.1 Request Structure (st_ees_request_t) Settings
	5.1.1 User Write Access
	5.1.2 User Read Access

	5.2 List of API Functions and R_EES_Execute Function Commands for the EES
	5.2.1 API Functions for the EES
	5.2.2 Commands for R_EES_Execute Function
	5.2.3 RFD Control API Functions for EES

	5.3 State Transitions
	5.4 Basic Flowchart
	5.5 Command Operation Flowchart
	5.6 Data Type Definitions
	5.6.1 Data Types
	5.6.2 Global Variables
	5.6.3 Enumerations

	5.7 Specifications of API Functions
	5.7.1 Specifications of API Functions for EES RL78 Type 01
	5.7.1.1 R_EES_Init
	5.7.1.2 R_EES_Open
	5.7.1.3 R_EES_Close
	5.7.1.4 R_EES_Execute
	5.7.1.5 R_EES_Handler
	5.7.1.6 R_EES_GetSpace

	5.7.2 RFD Control API Functions for EES
	5.7.3 Internal Functions for the EES

	6. Sample Programs
	6.1 File Structure
	6.1.1 Folder Structure
	6.1.2 List of Files
	6.1.2.1 List of Source Files
	6.1.2.2 List of Header Files

	6.2 Data Type Definitions
	6.2.1 Macro Defines

	6.3 Sample Program Functions
	6.3.1 Sample Program for Controlling the EEPROM Emulation
	6.3.1.1 main Function
	6.3.1.2 Sample_EES_Control Function

	6.4 Specifications of Sample Program Functions
	6.4.1 Sample Program Functions for Controlling the EEPROM Emulation
	6.4.1.1 main
	6.4.1.2 Sample_EES_Control

	6.5 Precautions in Case of Using Sample Program

	7. Creating a Sample Project for EES RL78 Type 01
	7.1 Creating a Project in the Case of Using a CC-RL Compiler
	7.1.1 Example of Creating a Sample Project
	7.1.2 Example of Registration of Target Folders and Target Files
	7.1.3 Build Tool Settings
	7.1.3.1 Include Path Settings
	7.1.3.2 The Setting of User Definition Macro
	7.1.3.3 Device Item Settings
	7.1.3.4 Section Item Settings

	7.1.4 Debug Tool Settings
	7.1.4.1 Setting of Connection with Target Board

	7.2 Creating a Project in the Case of Using IAR Compiler
	7.2.1 Example of Creating a Sample Project
	7.2.2 Example of Registration of Target Folders and Target Files
	7.2.3 Integrated Development Environment(IDE) Settings
	7.2.3.1 Include Path Settings
	7.2.3.2 The Setting of User Definition Macro
	7.2.3.3 Debugger Settings

	7.2.4 Linker Configuration File(.icf) Settings
	7.2.4.1 Section Settings
	7.2.4.2 Option Bytes Settings

	7.2.5 On-chip Debug Settings
	7.2.5.1 Example of How to Deal with Connection Errors

	7.3 Creating a Project in the Case of Using LLVM Compiler
	7.3.1 Example of Creating a Sample Project
	7.3.2 Example of Registration of Target Folders and Target Files
	7.3.3 Build Tool Settings
	7.3.3.1 Include Path Settings
	7.3.3.2 The Setting of User Definition Macro
	7.3.3.3 Linker Script File (.ld) Settings
	7.3.3.4 Section Settings

	7.3.4 Option Bytes Settings
	7.3.5 Debugger Settings

	7.4 Configurations Modify Procedure for Changing Device
	7.4.1 CC-RL Compiler Environment Settings
	7.4.1.1 Section Settings
	7.4.1.2 Debug Settings

	7.4.2 IAR Compiler Environment Settings
	7.4.2.1 Setting Up Header Files for Target Device
	7.4.2.2 Linker Configuration File Settings

	7.4.3 LLVM Compiler Environment Settings
	7.4.3.1 Linker Script File Settings

	7.4.4 Modifying the Sample Program (Common to CC-RL, IAR and LLVM Compilers)
	7.4.4.1 Modifying the Number of Data Flash Memories Used for EES Block
	7.4.4.2 Data Resizing for Each Identifier (data ID)

	8. Revision History
	8.1 Major Modifications in this Revision

	Colophon
	Back Cover

