
 Application Note

R01AN6948EJ0200 Rev.2.00 Page 1 of 59
Jan.23.2024

RX Family
TLS Implementation Example Using TSIP Driver (Azure RTOS)

Important Notice:
On November 21, 2023, Microsoft announced that they have decided to contribute Azure RTOS to Open
Source

under the stewardship of the Eclipse foundation and Azure RTOS becomes Eclipse ThreadX.

For detailed information, please refer to the announcement titled at Microsoft Contributes Azure RTOS to
Open Source.

The support strategy scheme for Eclipse ThreadX will be determined and communicated at a later date.

Microsoft will discontinue the Azure RTOS and Azure RTOS Middleware under the existing agreement
LICENSED-HARDWARE.txt.

It’s important to note that updates for Azure RTOS on these hardware will no longer be provided.

Introduction
The Trusted Secure IP (TSIP) driver supports APIs for SSL/TLS (referred to below as TLS) communication.
This document presents an example of adding the TSIP driver to Azure RTOS, which includes NetX Duo,
and explains how to confirm its operation. A sample project based on Azure RTOS is bundled with this
document. The sample project adds the TSIP driver to Azure RTOS, which includes NetX Duo, and enables
testing of MQTT communication via Microsoft Azure.

The sample project described in this document establishes connections via Microsoft Azure IoT Hub and IoT
Hub Device Provisioning Service (DPS). TLS is used to authenticate connections with DPS.

Devices on Which Operation Confirmed
The operation of the sample program appended to this document has been confirmed on the following
devices.

RX65N: R5F565NEHDF
RX72N: R5F572NNHDFB

Note: The descriptions in this document use the CK-RX65N (Ethernet) as an example.

R01AN6948EJ0200
Rev.2.00

Jan.23.2024

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 2 of 59
Jan.23.2024

Operating Environment
The operation of the sample program bundled with this document has been confirmed on the following
environment.

IDE e2 studio 2023-10
Toolchain CCRX compiler v3.05.00
Target board CK-RX65N (Ethernet)

CK-RX65N+RYZ014A (Cellular)
Renesas Starter Kit+ for RX65N-2MB
RX72N Envision Kit

Debugger E2 Lite emulator
(incorporated into the CK-RX65N board and RX72N
Envision Kit)

Azure RTOS v6.2.1_rel-rx-1.3.0
Driver package (RDP) RX Driver Package V1.41
TSIP driver Version 1.19 (binary version)
Security Key Management Tool Security Key Management Tool V.1.04
Tera Term Version 4.106
OpenSSL 3.1.3 Light
Gpg4win (Kleopatra) 4.1.0
Shell script (bash) execution environment Cygwin version 3.4.6

Note: This document provides a sample project for each supported target board.

Import the sample project that is appropriate for the target board you use.
Note that the CK-RX65N board comes in two versions: the Ethernet version, which uses an on-board
LAN, and the Cellular version, which uses a mobile network that becomes available by connecting the
RYZ014A cellular module to the board.
Also note that the applicable sample project differs depending on the version.

Related Application Notes
For details of TLS communication using the TSIP, refer to the following application note.

• RX Family TSIP (Trusted Secure IP) Module Firmware Integration Technology (Binary version)
(R20AN0548)

For a TLS implementation example using the TSIP driver and FreeRTOS, refer to the following application
note.

• RX Family Implementing TLS Using TSIP Driver (R01AN5880)
For a description of Azure operations, refer to the following document.

• RX65N Group Visualization of Sensor Data using RX65N Cloud Kit and Azure RTOS (R01AN6011)

https://www.renesas.com/us/en/software-tool/e-studio#download
https://www.renesas.com/us/en/software-tool/cc-compiler-package-rx-family#download
https://www.renesas.com/us/en/software-tool/rx-driver-package
https://www.renesas.com/us/en/software-tool/trusted-secure-ip-driver#document
https://www.renesas.com/us/en/software-tool/security-key-management-tool#downloads
https://www.renesas.com/us/en/search?keywords=R20AN0548
https://www.renesas.com/us/en/search?keywords=R01AN5880
https://www.renesas.com/us/en/search?keywords=R01AN6011

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 3 of 59
Jan.23.2024

Contents

1. Overview ... 5
1.1 Advantages of TLS Communication Using TSIP .. 5
1.2 TLS flow with TSIP .. 5
1.3 Cipher Suites Supported by TSIP Driver ... 5
1.4 TLS APIs of TSIP Driver .. 6
1.5 Definitions of Terms... 7

2. Preparing the Sample Project .. 8
2.1 Creating a Workspace ... 9
2.2 Downloading the Project ... 10
2.3 Importing the Project ... 10
2.4 Key and Certificate Preparation .. 12
2.4.1 Installing OpenSSL .. 12
2.4.2 Obtaining Root CA Certificate ... 13
2.4.3 Generating RSA Keys and Client Certificate ... 20
2.4.4 Root CA Certificate Signature Generation and Certificate File Format Conversion 22
2.4.5 Key Wrapping and Registration in the Project .. 24
2.4.5.1 Creating a UFPK and W-UFPK ... 25
2.4.5.2 Wrapping the Keying Data .. 34

3. Operations on Microsoft Azure Portal .. 42
3.1 Preparations for Connection to Azure IoT Hub (Azure Portal) .. 42
3.1.1 Creating an IoT Hub .. 42
3.1.2 Creating an IoT Hub Device Provisioning Service (DPS) Instance ... 42
3.1.3 Device Provisioning Using the IoT Hub and DPS Instance .. 42
3.2 Microsoft Azure Communication Settings ... 48
3.2.1 Azure IoT Settings ... 48
3.2.2 IP Address Settings ... 51
3.2.3 Client Certificate Format Selection .. 52

4. Building and Running the Project ... 53
4.1 Items to Confirm Before Building the Project .. 53
4.1.1 Settings for Renesas Starter Kit+ for RX65N-2MB ... 53
4.1.2 Setting for Code Generation During Build ... 53
4.2 Building the Project.. 55
4.3 Confirming Connection to Microsoft Azure .. 56
4.3.1 Checking Registration Status .. 56
4.3.2 Checking the Device ... 57

5. Appendix ... 58
5.1 Details of the Security Key Management Tool .. 58

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 4 of 59
Jan.23.2024

5.2 TLS Communication Performance Using TSIP Driver .. 58

6. Revision History ... 59

Notes:
• Git® is a trademark of Software Freedom Conservancy, Inc. (https://www.git-scm.com/about/trademark)
• GitHub® is a trademark of GitHub, Inc. (https://github.com/logos)
• OpenSSL™ is a trademark of OpenSSL Software Foundation.

(https://www.openssl.org/policies/trademark.html)
• Microsoft Azure is a trademark of Microsoft Corporation.

(https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks)

https://www.git-scm.com/about/trademark
https://github.com/logos
https://www.openssl.org/policies/trademark.html
https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 5 of 59
Jan.23.2024

1. Overview
1.1 Advantages of TLS Communication Using TSIP
The TSIP driver supports APIs for TLS. These APIs provide the following two advantages.

• No keying information is handled as plaintext during TLS protocol processing, thereby reducing the risk
that customer keying information stored on the device may leak.

• Hardware acceleration speeds up encryption processing.

1.2 TLS flow with TSIP
The TLS flow in this sample project is shown below.

This flow is an example of using an X.509 self-signed certificate (when the key exchange method is RSA) for
device authentication.

Figure 1-1 TLS flow with TSIP

1.3 Cipher Suites Supported by TSIP Driver
The TSIP driver supports the following cipher suites conforming to TLS 1.2.

• TLS_RSA_WITH_AES_128_CBC_SHA
• TLS_RSA_WITH_AES_256_CBC_SHA
• TLS_RSA_WITH_AES_128_CBC_SHA256
• TLS_RSA_WITH_AES_256_CBC_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256*1
• TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256*1
• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256*1

Note: 1. Server and client authentication (ECDSA) and encryption processing (AES-GCM) are not

supported by the sample project described in this document.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 6 of 59
Jan.23.2024

1.4 TLS APIs of TSIP Driver
Table 1.1 lists the TSIP driver APIs used for TLS communication. For details of each API, the application
note RX Family TSIP (Trusted Secure IP) Module Firmware Integration Technology (Binary Version)
(R20AN0548).

Table 1-1 API Functions Used for TLS Communication

Where Used API Function
Certificate installation R_TSIP_GenerateTlsRsaPublicKeyIndex

R_TSIP_Close
R_TSIP_Open
R_TSIP_TlsRootCertificateVerification

Random number generation R_TSIP_GenerateRandomNumber
Client authentication (key data processing) R_TSIP_GenerateRsa2048PrivateKeyIndex

R_TSIP_GenerateRsa2048PublicKeyIndex
Handshake message hash calculation R_TSIP_Sha256Init/Update/Final
Certificate R_TSIP_TlsCertificateVerificationExtension

R_TSIP_TlsCertificateVerification
Server key exchange
Client key exchange
(ECDHE key exchange algorithm)

R_TSIP_TlsServersEphemeralEcdhPublicKeyRetrieves
R_TSIP_GenerateTlsP256EccKeyIndex
R_TSIP_TlsGeneratePreMasterSecretWithEccP256Key

Client key exchange
(RSA key exchange algorithm)

R_TSIP_TlsGeneratePreMasterSecret
R_TSIP_TlsEncryptPreMasterSecretWithRsa2048PublicKey

Certificate Verify R_TSIP_RsassaPkcs1024/2048SignatureGenerate
R_TSIP_RsassaPkcs1024/2048SignatureVerification
R_TSIP_EcdsaP192/224/256/384SignatureGenerate
R_TSIP_EcdsaP192/224/256/384SignatureVerification

Finished R_TSIP_TlsGenerateMasterSecret
R_TSIP_TlsGenerateVerifyData
R_TSIP_TlsGenerateSessionKey
R_TSIP_Sha1HmacGenerateInit/Update/Final
R_TSIP_Sha1HmacVerifyInit/Update/Final
R_TSIP_Sha256HmacGenerateInit/Update/Final
R_TSIP_Sha256HmacVerifyInit/Update/Final
R_TSIP_Aes128CbcEncryptInit/Update/Final
R_TSIP_Aes128CbcDecryptInit/Update/Final
R_TSIP_Aes256CbcEncryptInit/Update/Final
R_TSIP_Aes256CbcDecryptInit/Update/Final
R_TSIP_Aes128GcmEncryptInit/Update/Final
R_TSIP_Aes128GcmDecryptInit/Update/Final

Application Data R_TSIP_TlsGenerateSessionKey
R_TSIP_Sha1HmacGenerateInit/Update/Final
R_TSIP_Sha1HmacVerifyInit/Update/Final
R_TSIP_Sha256HmacGenerateInit/Update/Final
R_TSIP_Sha256HmacVerifyInit/Update/Final
R_TSIP_Aes128CbcEncryptInit/Update/Final
R_TSIP_Aes128CbcDecryptInit/Update/Final
R_TSIP_Aes256CbcEncryptInit/Update/Final
R_TSIP_Aes256CbcDecryptInit/Update/Final
R_TSIP_Aes128GcmEncryptInit/Update/Final
R_TSIP_Aes128GcmDecryptInit/Update/Final

https://www.renesas.com/us/en/search?keywords=R20AN0548

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 7 of 59
Jan.23.2024

1.5 Definitions of Terms
Terms used in this document are defined below.

Table 1-2 Terms

Terms Description
Key injection Injecting a wrapped key into the device at the factory.
User key An encryption key in plaintext used by the user. Not used on the device.

For RSA and ECC, user keys are used as public keys and secret keys.
Encrypted key Key information generated by encrypting a user key using a UFPK or

update key and adding a MAC value. An encrypted key corresponding
to the same user key is a shared value on each device.

Wrapped key Data consisting of an encrypted key that has been converted into a
form that is usable by the TSIP driver by key injection. The wrapped
key has been wrapped using an HUK, so the wrapped key of the same
encrypted key will be a unique value on each device.

UFPK
(User Factory Programming
Key)

A keyring set by the user and used to generate an encrypted key from a
user key during key injection. Not used on the device.

W-UFPK
(Wrapped UFPK)

Key information generated by wrapping a UFPK using an HRK on the
DLM server. The UFPK is decrypted using the HRK internally by the
TSIP.

Hardware root key (HRK) A shared encryption key that exists only inside the TSIP and in secure
rooms within Renesas.

Hardware unique key (HUK) A device-specific encryption key that is derived internally by the TSIP
and used to protect key data.

Wrapping In this document the term wrapping refers to the use of a UFPK to
encrypt and MAC assignment as part of the process of generating an
encrypted key. The TSIP driver does not accept plaintext input of user
keys; they must be converted to an encrypted format (wrapped) before
they can be input.

DLM server
(Device Lifecycle Management
server)
(https://dlm.renesas.com/keywra
p/toEnglish)

The key administration server at Renesas. Used to perform key
wrapping (encrypting) of UFPKs.

https://dlm.renesas.com/keywrap/toEnglish
https://dlm.renesas.com/keywrap/toEnglish

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 8 of 59
Jan.23.2024

2. Preparing the Sample Project
The sample project uses CK-RX65N Cloud Kit to establish a TLS connection to Microsoft Azure in order to
demonstrate MQTT communication. A connection to Microsoft Azure IoT Hub is established via IoT Hub
Device Provisioning Service (DPS). This section presents a guide explaining how to create the sample
project used in the demo.

Information on making connections to the CK-RX65N board in order to run the sample project is provided
below. To enable debugging and serial communication, connect the CK-RX65N board to the PC with two
USB cables. To enable connection to the internet, connect the CK-RX65N board to a router with an Ethernet
cable.

Note: Connection to Azure is also established via Ethernet in the case of Renesas Starter Kit+ for RX65N-
2MB or RX72N Envision Kit.
The CK-RX65N board described in this document is the Ethernet version. If you are using the Cellular
version of the CK-RX65N board, use mobile network connection by connecting the RYZ014A board
(included in the kit) to the PMOD1 Connector of the CK-RX65N board.

Figure 2-1 Sample Project Connections

The sample project is based on the Azure RTOS project. Azure RTOS provides IoT Libraries that bring
together necessary source code for use with IoT devices. One of these is NetX Secure, a cryptographic
library made use of by the sample project.

Next, we describe the software components of the sample project.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 9 of 59
Jan.23.2024

FIT Module

RX65N

TSIP Driver

TSIP

 Azure RTOS
NetX Duo Libraries NetX Secure

Figure 2-2 Sample Project Software Components

The sample project is based on version 6.2.1 of the Azure RTOS project for RX MCUs, which can be
downloaded from the repository at the link shown below, and has further been modified in order to enable
linkage with the TSIP. The modifications that were made can be checked from the differences between the
sample project and its base project (downloadable at the following repository) by comparing them.

https://github.com/renesas/azure-rtos/releases/tag/v6.2.1_rel-rx-1.3.0

The procedure described in this section makes use of the following tools, which you will need to obtain
before proceeding.

• Shell script (bash) execution environment (The procedure described in this document uses Cygwin.)
• OpenSSL
• Security Key Management Tool

2.1 Creating a Workspace
Launch e2 studio and create a new workspace. Keep the names of the workspace and project files as short
as possible. If the total length of the full file path exceeds 256 bytes, an error will occur when you build the
project.

Example: Creating a workspace in location C:\workspace

Figure 2-3 Select a directory as workspace Window

https://github.com/renesas/azure-rtos/releases/tag/v6.2.1_rel-rx-1.3.0
https://github.com/renesas/azure-rtos/releases/tag/v6.2.1_rel-rx-1.3.0

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 10 of 59
Jan.23.2024

2.2 Downloading the Project
The sample project bundled with this document has the folder structure shown below. Copy these folders to
the workspace folder created as described in 2.1, Creating a Workspace.

The first level of the folder hierarchy is shown below.

ckrx65n_ccrx
|--key_crt_sig_generator
| |--ca
| |--ca-sign-keypair-rsa2048
| |--client-rsa2048
| |--output
|--patch
| |--tsip_integration
|--sample_azure_iot_embedded_sdk
| |--libs
| |--src

Figure 2-4 Project Folder Structure

In addition to the source code of the sample project, the folders contain tools you will need to create the
sample project. An outline of each folder is provided below.

Table 2-1 Contents of Sample Project

Folder Name Description
key_crt_sig_generator Contains tools and working folders used when generating keys and

certificates used for encryption.
Patch After the sample project has been generated, patch files used to

modify the project are stored here. Since the relevant patches have
already been applied to the sample project before it is imported, this
folder will not be used in the procedure described here.

sample_azure_iot_embedded_sdk The body of the sample project. You will import this folder by
following the procedure described in the next section.

2.3 Importing the Project
After launching e2 studio, from the menu bar select File → Import… → General → Existing Projects into
Workspace to open the Import Projects dialog box. Click the

Browse... button to the right of Select root directory: and specify sample_azure_iot_embedded_sdk in
the project folder ckrx65n-ccrx.

Confirm that sample_azure_iot_embedded_sdk appears under Projects:, check the box to select it, and
click the Finish button.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 11 of 59
Jan.23.2024

Figure 2-5 Import Projects Dialog Box

When the project has been imported successfully, sample_azure_iot_embedded_sdk appears in Project
Explorer panel as shown below. If Project Explorer is not displayed, click C/C++ at the upper right of the
window to change the perspective and then select Window → Show View → Project Explorer.

Figure 2-6 Window after Importing the Sample Project

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 12 of 59
Jan.23.2024

2.4 Key and Certificate Preparation
You will need to register keying information and certificates listed in Table 2.2 in the sample program. This
section explains how to obtain these keys and certificates as well as the procedures for converting them for
use with the TSIP driver and for registering them in the project files. Follow the steps described below to
generate keying information and certificates and register them in the project. The necessary information and
how to obtain it are summarized in the table below.

Table 2-2 Methods for Obtaining Keys and Certificates for Use with Sample Project

Key/Certificate How to Obtain Section
RSA root CA certificate Download from dedicated link (DER format) or in web browser

(PEM format).
2.4.2

RSA key pair Created by user using OpenSSL tools or equivalent. 2.4.3
RSA client certificate Created by user using OpenSSL tools or equivalent. 2.4.3
Key pair for root CA
certificate signature
generation and signature
verification

Created by user using OpenSSL tools or equivalent. 2.4.4
2.4.5

2.4.1 Installing OpenSSL
OpenSSL is used to generate some keys and certificates. Follow the steps below to install OpenSSL.

1. Access the download site for the Win32 and Win64 versions of OpenSSL and download the installer that
matches your OS. For the 64-bit version of Windows you would download v3.1.3 Light, shown below. If
the version number shown is different, download the latest version available.

Figure 2-7 OpenSSL Download Page

2. Run the downloaded EXE (or MSI) file to install OpenSSL.
3. After the installation completes, in Windows select System Properties → Environment Variables… and

add the OpenSSL install folder to the Path variable.
64-bit version: C:\Program Files\OpenSSL-Win64\bin

https://slproweb.com/products/Win32OpenSSL.html

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 13 of 59
Jan.23.2024

2.4.2 Obtaining Root CA Certificate
The Azure cloud uses two types of root CA certificates: [Baltimore CyberTrust Root] and [DigiCert Global
Root G2].
This sample project allows you to register up to three types of root CA certificates. The following steps will
guide you through enrolling the two types of root CA certificates mentioned above.

Obtain an RSA root CA certificate and register it in the sample project. Either of the two procedures
described below can be used to accomplish this; choose the one best suited to the environment you are
using. Both procedures will enable you to obtain the same RSA root CA certificate.
1. Obtain from Microsoft Azure site
2. Obtain by exporting from a web browser (Microsoft Edge)

Note that the TLS certificates used by the Azure service are scheduled to change. Refer to the explanation
on the page linked to below for details.

https://techcommunity.microsoft.com/t5/internet-of-things-blog/azure-iot-tls-critical-changes-are-almost-here-
and-why-you/ba-p/2393169

The sample project uses the following two types of root CA certificates.
1. Baltimore Cyber Trust Root
2. DigiCert Global Root G2

(1) Obtaining a Root CA Certificate
(a) Obtaining a Certificate from the Microsoft Azure Site
You can obtain a root CA certificate from the page linked to below.

https://docs.microsoft.com/en-us/azure/security/fundamentals/tls-certificate-changes#what-is-changing

Click the Baltimore CyberTrust Root and DigiCert Global Root G2 link to download the RSA certificate.

Figure 2-8 Obtaining an RSA Root Certificate

The downloaded root CA certificate is a file in DER format with the following file name (and the extension
CRT).

1. BaltimoreCyberTrustRoot.crt
2. DigiCertGlobalRootG2.crt

https://techcommunity.microsoft.com/t5/internet-of-things-blog/azure-iot-tls-critical-changes-are-almost-here-and-why-you/ba-p/2393169
https://techcommunity.microsoft.com/t5/internet-of-things-blog/azure-iot-tls-critical-changes-are-almost-here-and-why-you/ba-p/2393169
https://docs.microsoft.com/en-us/azure/security/fundamentals/tls-certificate-changes#what-is-changing

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 14 of 59
Jan.23.2024

The root CA certificate must be in PEM format for use by the sample project. Therefore, follow the steps
below to convert the downloaded root CA certificate from DER format to PEM format (extension: CER).

1. Copying the root CA certificate
Copy the downloaded BaltimoreCyberTrustRoot.crt and DigiCertGlobalRootG2.crt file to a working
folder.

2. Converting the root CA certificate of the Baltimore Cyber Trust Root to PEM format
Open the Windows command prompt and enter the following OpenSSL command, shown in blue.
openssl x509 -in BaltimoreCyberTrustRoot.crt -inform DER -out Baltimore_CyberTrust_Root.cer -outform
PEM

Figure 2-9 Conversion to PEM Format in OpenSSL(Baltimore)

3. Converting the root CA certificate of the DigiCert Global Root G2 to PEM format
Open the Windows command prompt and enter the following OpenSSL command, shown in blue.
openssl x509 -in DigiCertGlobalRootG2.crt -inform DER -out DigiCertGlobalRootG2.cer -outform PEM

Figure 2-10 Conversion to PEM Format in OpenSSL(DigiCert)

4. When the conversion completes, two types of PEM format files will be created.
Baltimore_CyberTrust_Root.cer
DigiCertGlobalRootG2.cer

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 15 of 59
Jan.23.2024

(b) Using a Web Browser (Microsoft Edge) to Obtain a Certificate
The steps for using a web browser (Microsoft Edge) to download a root CA certificate in PEM format are as
follows.

1. Click the ... (Settings and more) button in the upper right of the Microsoft Edge window and select
Settings from the menu.

Figure 2-11 Microsoft Edge Settings Window

2. On the Microsoft Edge Settings menu, select Privacy, search, and services, and under Security click

the icon to the right of Manage certificates.

Figure 2-12 Microsoft Edge Settings Menu

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 16 of 59
Jan.23.2024

3. On the Certificates dialog box, select the Trusted Root Certification Authorities tab, select the root CA
certificate with Baltimore CyberTrust Root designated as both Issued To and Issued By, and click the
Export… button. The Welcome window of the Certificate Export Wizard appears.

Figure 2-13 Certificates Dialog Box(Baltimore)

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 17 of 59
Jan.23.2024

4. On the Welcome window of the Certificate Export Wizard, click the Next button. Then select Base-64
encoded X.509 (.CER) as the export file format and click the Next button.

Figure 2-14 Specifying the Export File Format

5. On the File to Export window, click the Browse... button, select the folder to export the file to, enter

Baltimore_CyberTrust_Root.cer for File name…, and click the Next button.

Figure 2-15 Specifying the Export File Name

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 18 of 59
Jan.23.2024

6. When the Completing the Certificate Export Wizard window appears, click the Finish button to export
the root CA certificate.

Figure 2-16 Completing the Certificate Export Wizard Window

7. Export the root CA certificate of DigiCert Global Root G2 by following steps 1 to 6. When exporting,

enter the file name as DigiCertGlobalRootG2.cer.

Figure 2-17 Certificates Dialog Box(DigiCert)

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 19 of 59
Jan.23.2024

(2) Placing the Newly Created Root CA Certificate in the Project Folder
Copy the root CA certificate exported as described in (1) to the ca folder in the key_crt_sig_generator
folder of the sample project (location shown in red). Do not change the file name as it will be used when
running a script, as described below.

key_crt_sig_generator
|-- ca
| |-- Baltimore_CyberTrust_Root.cer
| |-- DigiCertGlobalRootG2.cer
|-- ca-sign-keypair-rsa2048
|-- client-rsa2048
|-- output
|--1_rsa2048_convertCrt.sh
|--3_showkeyValues.sh
|--convertCrt.sh

Figure 2-18 Location of Root CA Certificate

(3) About the root CA certificate used for the sample project
Connection to Azure IoT Hub or IoT Hub Device Provisioning Service (DPS) requires a root CA certificate.
Set the root CA certificate in the sample project. The sample project provides the following three files, which
can be used for registering the root CA certificate data:

• CyberTrust_Root_crt_array_1.txt
• CyberTrust_Root_crt_array_2.txt
• CyberTrust_Root_crt_array_3.txt

Now you have .cer files that you prepared in (2). The following sections describe how to convert these files
into the above files and register the resulting files in the sample project as root CA certificate data. In the
following sections, you will also generate a PSS-signed file that is necessary for verifying the root CA
certificate.

In the project, you can register a maximum of three root CA certificates and PSS-signed files. Because the
certificates are automatically validated by using the information registered in them, you do not need to set the
certificate to be used.

Note: As of October 2023, Azure DPS only supports connections using Baltimore CyberTrust Root and IoT
Hub only supports connections using DigiCert Global Root G2. Additionally, Azure DPS will be
migrated to DigiCert Global Root G2. Please check Microsoft's Azure support information, etc. for the
support status of root CA certificates in Azure.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 20 of 59
Jan.23.2024

2.4.3 Generating RSA Keys and Client Certificate
Generate an RSA key pair and client certificate, and register them in the sample project. You need to use a
tool such as OpenSSL to accomplish this. When selecting a device authentication method (X.509 self-signed
certificate) to perform TLS communication, you will need to create an RSA-2048 client certificate and client
key pair (public key and private key).

(1) Generating a Key Pair and Certificate
Follow the steps below to create an RSA key pair (for the client) and a client certificate (self-signed
certificate).*1

Note: 1. Do not change the file names of the key pair and certificate as they will be used when running a
script, as described below.

1. Create a working folder for storing the newly generated key pair and certificate, then open the command

prompt and change the active folder to the working folder.
2. Run the openssl command with the options shown below to create a key pair.

openssl genpkey -out device1-private.pem.key -algorithm RSA -pkeyopt rsa_keygen_bits:2048
The key pair is created with the file name device1-private.pem.key.

Figure 2-19 Creating a Key pair

3. Run the following command to create a certificate signing request (CSR).
openssl req -new -key device1-private.pem.key -out device1.csr
When you run the command, you are asked to enter parameters as shown below. You only need to enter
a value of TSIP_sample_test for the item Common Name.*1 For the other parameters, simply press the
Enter key without inputting anything.

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []:TSIP_sample_test
Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 21 of 59
Jan.23.2024

Figure 2-20 Creating a Certificate Signing Request
Note: 1. The Common Name parameter entered here is used as the registration ID (common name) for

Azure IoT Hub DPS, as described below.
4. Next, enter the following command to confirm and verify the CSR.

openssl req -text -in device1.csr -verify -noout

Figure 2-21 Confirming and Verifying the CSR

5. Next, enter the following command to create a client certificate.
openssl x509 -req -days 365 -in device1.csr -signkey device1-private.pem.key -out device1-
certificate.pem.crt
A client certificate is created with the file name device1-certificate.pem.crt.

Figure 2-22 Creating a Self-Signed Certificate

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 22 of 59
Jan.23.2024

This newly generated client certificate will also be used to register on Azure IoT Hub Device Provisioning
Service (DPS).

(2) Placing the Newly Created Key and Certificate in the Project Folder
Copy the key pair file device1-private.pem.key and client certificate file device1-certificate.pem.crt
created as described in (1) to the client-rsa2048 folder in the key_crt_sig_generator folder of the sample
project (location shown in red). Do not change the file names as they will be used when running a script, as
described below.

key_crt_sig_generator
|-- ca
| |-- Baltimore_CyberTrust_Root.cer
| |-- DigiCertGlobalRootG2.cer
|-- ca-sign-keypair-rsa2048
|-- client-rsa2048
| |-- device1-certificate.pem.crt
| |-- device1-private.pem.key
|-- output
|-- 1_rsa2048_convertCrt.sh
|-- 3_showkeyValues.sh
|-- convertCrt.sh

Figure 2-23 Location of Private Key and Certificate

2.4.4 Root CA Certificate Signature Generation and Certificate File Format Conversion
Create a root CA certificate and client certificate, and then register them in the sample project (source code).
Certificates used with TLS are generally provided in PEM format, but the TSIP driver used by the sample
project requires that certificates be converted from PEM format to DER format. Follow the steps described
below to convert the certificates. A script file is provided in the key_crt_sig_generator project folder to
perform the necessary conversions. Run the script file as a shell script (bash). The example below uses
Cygwin to run the script.

Before running the script, follow the steps described in sections 2.4.2 and 2.4.3 to ensure that the key and
certificate files are located in the designated folders.

(1) Converting the RSA Certificate
Run the script to convert the RSA root CA certificate and client certificate to DER format. The script
generates an RSA 2048-bit key pair for generating and verifying the root CA certificate signature and then
uses the private key from the generated key pair to generate a signature for the root CA certificate. After
conversion to DER format, each certificate is converted to the C language array format to allow it to be
registered in the source code of the sample project.

Launch Cygwin and change the active directory to the key_crt_sig_generator folder of the sample project.
Then enter the following command to run the script.

./1_rsa2048_convertCrt.sh

Figure 2-24 Running the Script

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 23 of 59
Jan.23.2024

(2) Registering the Converted Files in the Project
After the script runs, the following eight files will have been created in the key_crt_sig_generator/output
folder.

• Baltimore_CyberTrust_Root_crt_array.txt
• Baltimore_CyberTrust_Root_sig_array.txt
• DigiCertGlobalRootG2_crt_array.txt
• DigiCertGlobalRootG2_sig_array.txt
• client_rsa2048_crt_array.txt
• Baltimore_CyberTrust_Root_crt.der
• Baltimore_CyberTrust_Root_sig.sig
• client_rsa2048_crt.der

Of these, the files listed in red are used by the sample project. These files contain generated binary data in C
language uint8_t array format.

Rename the four files that are related to the root CA certificate as shown in the following table.

Table 2-3 Renaming the Root CA Certificate Files

Before the Renaming After the Renaming
Baltimore_CyberTrust_Root_crt_array.txt CyberTrust_Root_crt_array_1.txt
Baltimore_CyberTrust_Root_sig_array.txt CyberTrust_Root_sig_array_1.txt
DigiCertGlobalRootG2_crt_array.txt CyberTrust_Root_crt_array_2.txt
DigiCertGlobalRootG2_sig_array.txt CyberTrust_Root_sig_array_2.txt

Save the above four renamed files and the client_rsa2048_crt_array.txt file in the following folder in the
sample project:
sample_azure_iot_embedded_sdk/src/userdata_tsip
Overwrite the files existing in the folder with the new files.

In addition, during the above certificate generation process, the key pair and public key file for signature
verification of the root CA certificate shown below are generated in the key_crt_sig_generator /ca-sign-
keypair-rsa2048 folder.
The key pair file (rsa2048-private.pem) is also used in the process in Section 2.4.5.

1. rsa2048-private.pem(key pair file)
2. rsa2048-public.pem(public key file)

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 24 of 59
Jan.23.2024

2.4.5 Key Wrapping and Registration in the Project
Register in the sample project (source code) a key pair for verifying the signature of the generated in section
2.4.3 and 2.4.4, root certificate and client certificate keying information. The TSIP driver does not accept
input of user keys in plaintext, so the keys must be “wrapped” to convert them to a format that will be
accepted by the TSIP driver.

As with certificates, keys used for TLS are generally provided in PEM format. For use by the TSIP driver, the
keying data must be extracted from the PEM format key file. After this, wrap it using the Renesas DLM
server (Renesas Key Wrap service) and the Security Key Management Tool.

OpenPGP encryption is required in order to exchange keying data with the Renesas DLM server. The
procedure described below uses Gpg4win (Kleopatra) for OpenPGP encryption. The following is an overview
of the procedure.

1. Use the Security Key Management Tool to create a plaintext UFPK.
2. Use Kleopatra to apply PGP encryption to the UFPK (to enable exchanges of data associated with key

wrapping).
3. Use the Renesas Key Wrap service to send the PGP-encrypted UFPK to Renesas.
4. Receive an encrypted UFPK (PGP-encrypted for transmission) from Renesas.
5. Use Kleopatra to decrypt the PGP encryption and obtain the encrypted UFPK (W-UFPK).
6. Use the Security Key Management Tool to verify the signature of the root certificate and wrap the client

certificate key pair information using the UFPK and W-UFPK.
7. Register the wrapped encrypted key files in the source code.

Detailed steps are given below.

https://dlm.renesas.com/keywrap/toEnglish
https://dlm.renesas.com/keywrap/toEnglish

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 25 of 59
Jan.23.2024

2.4.5.1 Creating a UFPK and W-UFPK
Generate a random User Factory Programming Key (UFPK) and upload it to the DLM server to generate a
W-UFPK (a UFPK wrapped by the Renesas Key Wrapping service). The UFPK is used to wrap the public
key used for signature verification.

You can use the Security Key Management Tool to create a UFPK file*1 in a format that will be accepted by
the DLM server.

Note: 1 The procedure for generating a UFPK for wrapping and an encrypted UFPK (W-UFPK) is described
in this section.
However, the keying information generated as described here is for use with the sample project and
cannot be used in an actual product. For use in mass production, etc., it is necessary to generate a
unique key. This process is covered in detail in a separate application note. This documentation is
available to customers utilizing, or considering utilizing, Renesas MCUs.
Please contact your Renesas Electronics sales office for details. https://www.renesas.com/contact/

(1) Registration on the Renesas Key Wrap Service
To perform encryption on the DLM server, it is necessary at the time of the first transaction only to perform
an OpenPGP key exchange with the Renesas DLM server. Log in on the page linked to below to perform the
initial registration.

Login screen of Key Wrap service (renesas.com)

For details, refer to the Key Wrap service FAQ linked to below.

KeyWrap_Service_Operation_Manual.pdf (renesas.com)

Next, use OpenPGP to generate a PGP key pair. The example procedure described in this document uses
Gpg4win and Kleopatra. The steps for installing and using Gpg4win are described in section 8, Annex
[Appendix], of the Key Wrap service manual linked to above. Follow the instructions to install Gpg4win.

https://www.renesas.com/contact/
https://dlm.renesas.com/keywrap/toEnglish
https://dlm.renesas.com/manual/KeyWrap_Service_Operation_Manual.pdf

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 26 of 59
Jan.23.2024

(2) Creating an OpenPGP Key Pair and Performing an OpenPGP Key Exchange with the Renesas
DLM Server

You need to create a key pair in Kleopatra before you can perform an OpenPGP key exchange with the
Renesas DLM server. This procedure is necessary only for the first transaction. Launch Kleopatra and click
the New Key Pair button on the Certificates tab. When the Create OpenPGP Certificate dialog box
appears, click the Advanced Settings... button.

↓

Figure 2-25 Generating a New Key Pair

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 27 of 59
Jan.23.2024

On the Advanced Settings dialog box, enter the settings shown to specify RSA and 4,096 bits, then click
the OK button. The Renesas DLM server only supports exchange of RSA keys.

Figure 2-26 Advanced Settings Dialog Box

On the dialog box that appears after clicking the New Key Pair button, enter values for Name and Email
address, then click the OK button. You can also check the box next to Protect the generated key with a
passphrase to include a passphrase for additional security. If you use this setting, make sure you do not
forget the passphrase.

After the key pair has been created, the registered key pair information appears in the Kleopatra window, as
shown below. Select the newly registered key pair and click the Export button to output the OpenPGP public
key. The file name will have the extension ASC.

Figure 2-27 Outputting Your Own PGP Public Key

On the Renesas Key Wrap service website, click PGP key exchange and register the newly created
OpenPGP public key. If the registration is successful, you will receive an email containing the Renesas PGP
public key.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 28 of 59
Jan.23.2024

↓

Figure 2-28 PGP Public Key Exchange
(3) Registering the Renesas OpenPGP Public Key
The Renesas PGP public key is used by the DLM server to decrypt PGP encrypted keys. Register the
Renesas PGP public key you received by email in Kleopatra. To do this, click the Import button on the
Kleopatra toolbar.

Figure 2-29 Importing the Renesas PGP Public Key
The Select Certificate File window appears to allow you to select the file to be imported. Select Any files (*)
as the extension, specify the keywrap-pub.key PGP public key file sent to you by Renesas, and click the
Open button.

Figure 2-30 Select Certificate File Window

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 29 of 59
Jan.23.2024

When the import completes, click the OK button to close the Certificate Import Result window. If a window
for signature and encryption confirmation appears during the import process, select the previously registered
key pair.

Figure 2-31 Renesas PGP Public Key Import Status
(4) Generating a UFPK (Plaintext) File
Use the Security Key Management Tool to create a plaintext UFPK file.
Download the latest version of the Security Key Management Tool from the Downloads page at the link
shown below. After downloading the relevant .zip file, unzip it, and then run the unzipped .exe file to install
the software.
Security Key Management Tool | Renesas
After installing the Security Key Management Tool, start it, click the Overview tab, and then select RX
Family, TSIP.

Figure 2-32 Selecting the MCU

https://www.renesas.com/jp/software-tool/security-key-management-tool#downloads

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 30 of 59
Jan.23.2024

In the Security Key Management Tool app, click the Generate UFPK tab, and then select Generate random
value. In the Output file (.key): field, enter the name of the UFPK file to be output, with its full path name. In
this example, sample.key is used as the file name. After entering the path and file name as shown in the
following figure, click the Generate UFPK key file button. The UFPK file is output to the specified path.

Figure 2-33 Generating a UFPK

(5) PGP Encrypting the UFPK
Use Kleopatra to PGP encrypt the UFPK (sample.key) created as described in (4) using the previously
created OpenPGP key pair and the Renesas PGP public key. Click the Sign/Encrypt button on the
Kleopatra toolbar and select the sample.key file. When the Sign / Encrypt Files window appears, specify
the previously created key pair for Sign as and Encrypt for me.

• Sign as: Specify you own key pair.
• Encrypt for me: Specify you own key pair.
• Encrypt for others: Specify the Renesas PGP public key.

For Output files/folder: specify the output destination folder, then click the Sign / Encrypt button. The PGP
encrypted UFPK file sample.key.pgp is created in the specified folder.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 31 of 59
Jan.23.2024

↓

Figure 2-34 PGP Encrypting sample.key

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 32 of 59
Jan.23.2024

(6) Encrypting the PGP Encrypted UFPK on the DLM Server
Next, use the Renesas Key Wrap service website to upload the PGP encrypted UFPK to the DLM server and
encrypt it. On the Key Wrap service website, click the following links in the order shown: RENESAS RX →
RX65N/RX651 Encryption of customer’s data*1 → Encryption service for products. When the upload
page appears, click the Reference button, specify the sample.key.pgp file created as described in (4), and
click the Settle button.

Note: 1. If you are using the RX72N Envision Kit, click RX72N Encryption of customer’s data.

↓

↓

↓

Figure 2-35 Uploading the UFPK

https://dlm.renesas.com/keywrap/toEnglish

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 33 of 59
Jan.23.2024

The following page is displayed when the upload finishes, and encryption is performed on the Renesas DLM
server. When encryption completes, a file named sample.key_enc.key.pgp is emailed to you by Renesas.
Store this file in a folder of your choice.

Figure 2-36 Upload to DLM Server Complete

(7) Decrypting sample.key_enc.key.pgp using OpenPGP
Use your own OpenPGP key to decrypt the file sample.key_enc.key.pgp sent by Renesas to obtain the
encrypted UFPK (W-UFPK). In Kleopatra, click the Decrypt/Verify button and select the file
sample.key_enc.key.pgp to commence decryption. When decryption finishes and the message All
operations completed. appears in the window, click the Save All button to save the decrypted key file. The
decrypted file is output to the same folder as that containing the encrypted file sample.key_enc.key. This
completes the process of encrypting sample.key.

↓

Figure 2-37 PGP Decryption of W-UFPK

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 34 of 59
Jan.23.2024

2.4.5.2 Wrapping the Keying Data
Use the sample.key and sample.key_enc.key files created as described in 2.4.5.1, Creating a UFPK and
W-UFPK, to wrap the keying data for root CA certificate signature verification and the client certificate keying
data and then convert the data for registration in the project files.

(1) Extracting Keying Data
Extract the keying data for root CA certificate signature verification and the client certificate keying data from
the PEM format key files created as described in 2.4.3, Generating RSA Keys and Client Certificate, and
2.4.4, Root CA Certificate Signature Generation and Certificate File Format Conversion. Here we use the
following two key files.

1. Public key file for root CA signature verification (PEM format)
 /key_crt_sig_generator /ca-sign-keypair-rsa2048 /rsa2048-public.pem

2. Client certificate key pair file (PEM format)
 /key_crt_sig_generator /client-rsa2048 /device1-private.pem.key

(2) Wrapping the Keying Data and Outputting Encrypted Key Files
Prepare the four data items listed below, created in (1) above and in 2.4.5.1. Then, enter these items in the
Security Key Management Tool to generate encrypted key files. The resulting encrypted key files will be
output as source code that can be incorporated into the project files as encrypted keying data wrapped using
the UFPK and W-UFPK.

• UFPK (sample.key)
• W-UFPK (sample.key_enc.key)
• Public key file for root CA certificate signature verification
• Client certificate key pair file

The following shows the procedure for generating encrypted key files.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 35 of 59
Jan.23.2024

1. Start the Security Key Management Tool that has already been installed.
In the Security Key Management Tool app, open the Wrap Key tab. Then, open the Key Type tab, and
then select the RSA radio button and 2048 bits, public.

Figure 2-38 Wrapping Public Keys by Using the Security Key Management Tool

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 36 of 59
Jan.23.2024

2. Register UFPK and W-UFPK files.
In the Key Data tab, in the Wrapping Key area, select the UFPK radio button. Then, click the Browse
button for both the UFPK File and W-UFPK File fields, and then respectively specify the UFPK file
(sample.key) and W-UFPK file (sample.key_enc.key) that you created in 2.4.5.1.
In the IV area, select the Generate random value radio button. A random value is generated.

Figure 2-39 Specifying the UFPK and W-UFPK Files

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 37 of 59
Jan.23.2024

3. Generate the public key data for verifying the signature of the root CA certificate.
In the Key Data tab, select the File radio button. Then, click the Browse button, select PEM key data
(*.pem), and then select the following file as the key pair file for root CA signature verification (in PEM
format):
/key_crt_sig_generator/ca-sign-keypair-rsa2048/rsa2048-public.pem
In the Output area, select a file named encrypted_user_rsa2048_ne_key in any folder of your choice in
the File field. Similarly, in the Key name field, enter encrypted_user_rsa2048_ne_key. Then, click the
Generate file button. The public key data for verifying the signature of the root CA certificate will be
generated.
The string encrypted_user_rsa2048_ne_key (specified in the File and Key name fields) is hard-coded
in the source code, and should therefore not be changed.

Figure 2-40 Generating Public Key Data for Verifying the Signature of the Root CA Certificate
When the “OPERATION SUCCESSFUL” message appears at the bottom of the tool window, generation is
complete.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 38 of 59
Jan.23.2024

4. Generate the public key for the client certificate.
Before performing this step, make sure that you rename the file in the /key_crt_sig_generator /client-
rsa2048 folder as follows:
Before the change: device1-private.pem.key
After the change: device1-private.pem
Open the Key Type tab, and then make sure that the RSA radio button and 2048 bits, public are
selected in the same way as in step 1.
Open the Key Data tab again, and then select the File radio button, click the Browse button, select PEM
key data (*.pem), and then select the device1-private.pem file, which is the client certificate key pair file
(in PEM format) that you renamed.
In the Output area, select a file named encrypted_user_rsa2048_ne_key2 in any folder of your choice
in the File field. Similarly, in the Key name field, enter encrypted_user_rsa2048_ne_key2. Then, click
the Generate file button. The public key data for the client certificate will be generated.
The string encrypted_user_rsa2048_ne_key2 (specified in the File and Key name fields) is hard-coded
in the source code, and therefore should not be changed.

Figure 2-41 Generating the Public Key for the Client Certificate
When the “OPERATION SUCCESSFUL” message appears at the bottom of the tool window, generation is
complete.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 39 of 59
Jan.23.2024

5. Generate the private key for the client certificate.
Open the Key Type tab, and then select the RSA radio button and 2048 bits, private.

Figure 2-42 Private Key for the Client Certificate

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 40 of 59
Jan.23.2024

Open the Key Data tab again. Select the File radio button, click the Browse button, select PEM
key data (*.pem), and then select the /key_crt_sig_generator /client-rsa2048/device1-
private.pem file, which is the client certificate key pair file (in PEM format) that you renamed.

In the Output area, select a file named encrypted_user_rsa2048_nd_key in any folder of your
choice in the File field. Similarly, in the Key name field, enter encrypted_user_rsa2048_nd_key.
Then, click the Generate file button. The private key data for the client certificate will be generated.
The string encrypted_user_rsa2048_nd_key (specified in the File and Key name fields) is hard-
coded in the source code, and therefore should not be changed.

Figure 2-43 Wrapping Private Keys by Using the Security Key Management Tool

When the “OPERATION SUCCESSFUL” message appears at the bottom of the tool window, generation is
complete.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 41 of 59
Jan.23.2024

6. Now you have the following six generated encrypted key files. Save these files in the
sample_azure_iot_embedded_sdk/src/userdata_tsip folder in the sample project. Overwrite the files
existing in the folder with the new files.

• encrypted_user_rsa2048_ne_key.c
• encrypted_user_rsa2048_ne_key.h
• encrypted_user_rsa2048_ne_key2.c
• encrypted_user_rsa2048_ne_key2.h
• encrypted_user_rsa2048_nd_key.c
• encrypted_user_rsa2048_nd_key.h

This completes the procedure for preparing the basic project files. Section 3 describes how to configure
settings on Microsoft Azure Portal and then register Azure-related setting values, and section 4 explains how
to build and run the project.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 42 of 59
Jan.23.2024

3. Operations on Microsoft Azure Portal
The operations that you will need to perform on Microsoft Azure in order to run the sample project described
in this document are explained below. The sample project uses IoT Hub Device Provisioning Service (DPS)
to connect to an Azure IoT hub.

3.1 Preparations for Connection to Azure IoT Hub (Azure Portal)
3.1.1 Creating an IoT Hub
Perform the preparations necessary for connection to Microsoft Azure. Follow the instruction in 3.1, Azure
Preparation (3.1.1 and 3.1.2), in the application note Visualization of Sensor Data using RX65N Cloud Kit
and Azure RTOS to create an IoT hub. The procedure described in this document connects to the IoT hub
via DPS, so it is not necessary to create a device as described in 3.1.3, Create an IoT Device.

3.1.2 Creating an IoT Hub Device Provisioning Service (DPS) Instance
Follow the instruction on the page linked to below to create a new IoT Hub Device Provisioning Service
instance.

https://learn.microsoft.com/en-us/azure/iot-dps/quick-setup-auto-provision#create-a-new-iot-hub-device-
provisioning-service-instance

After creating the new DPS instance, follow the instructions on the page linked to below to link the IoT hub to
the Device Provisioning Service instance.

https://learn.microsoft.com/en-us/azure/iot-dps/quick-setup-auto-provision#link-the-iot-hub-and-your-device-
provisioning-service-instance

This completes the procedure for creating an IoT hub and DPS instance.

3.1.3 Device Provisioning Using the IoT Hub and DPS Instance
The steps for performing device provisioning using the newly created IoT hub and Device Provisioning
Service (DPS) instance are described below.

1. On the Azure Portal home page, click All services → Internet of Things category → Azure IoT Hub
Device Provisioning Services. On the list of Azure IoT Hub Device Provisioning Services that is
displayed, select the DPS instance created as described in 3.1.2, Creating an IoT Hub Device
Provisioning Service (DPS) Instance.

Figure 3-1 List of DPS Instances

https://www.renesas.com/us/en/search?keywords=%20R01AN6011
https://www.renesas.com/us/en/search?keywords=%20R01AN6011
https://learn.microsoft.com/en-us/azure/iot-dps/quick-setup-auto-provision#create-a-new-iot-hub-device-provisioning-service-instance
https://learn.microsoft.com/en-us/azure/iot-dps/quick-setup-auto-provision#create-a-new-iot-hub-device-provisioning-service-instance
https://learn.microsoft.com/en-us/azure/iot-dps/quick-setup-auto-provision#link-the-iot-hub-and-your-device-provisioning-service-instance
https://learn.microsoft.com/en-us/azure/iot-dps/quick-setup-auto-provision#link-the-iot-hub-and-your-device-provisioning-service-instance

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 43 of 59
Jan.23.2024

2. On the menu panel of the selected DPS instance, click Manage enrollments. The Manage enrollments
page is displayed.

Figure 3-2 Managing DPS Enrollments

3. On the Manage enrollments page, click Individual enrollments tab → Add individual enrollment to

display the Add enrollment page.

Figure 3-3 Manage enrollments Page

4. On the Add enrollment page, configure settings for the DPS instance. Enter the following items. When

no value is specified, use the default setting.
1. On the Registration + provisioning tab, configure the following settings.

• For Attestation mechanism, specify X.509 client certificates.*1
• Click the folder icon to the right of Primary certificate file and select the client certificate file.

The client certificate file is device1-certificate.pem.crt, created as described in 2.4.3(1) 5. The file
name extension must be PEM or CER, so first copy the client certificate file to a folder of your
choice and rename it to device1-certificate.pem before selecting it. When the file has been
selected, the Common Name specified in the certificate is displayed under Primary certificate
file. After configuring settings, click the Next: IoT hubs > button.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 44 of 59
Jan.23.2024

Note: 1. If Symmetric key is selected, you will also need to specify an ID of your choice for Registration
ID and specify a symmetric key in the project.

Figure 3-4 Add enrollment: Registration + provisioning

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 45 of 59
Jan.23.2024

2. On the IoT hubs tab, enter the name of the IoT hub to be used for device provisioning under Target
IoT hubs. After configuring settings, click the Next: Device settings > button.

Figure 3-5 Add enrollment: IoT hubs

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 46 of 59
Jan.23.2024

3. On the Device settings tab, specify the Device ID.
It is not necessary to enter a setting for device ID because the Common Name registered in the
primary certificate file as described in 2.4.3(1) is already set as the device ID. If you wish to specify a
different device ID, enter it under Device ID. After configuring settings, click the Next: Review +
create > button.

Figure 3-6 Add enrollment: Device settings

4. On the Review + create tab, check the registered settings and, if there are no problems, click the
Create button.

Figure 3-7 Add enrollment: Review + create

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 47 of 59
Jan.23.2024

5. When the settings have been successfully saved, the newly created DPS instance is added to the list
under Registration ID on the Individual enrollments tab.

Figure 3-8 DPS Registration ID List

This registration ID is the Common Name registered on the client certificate used. (If a user-defined
device name was registered, the registered device name is used.) Make a note of the registration ID for
later use because you will need to specify it in the project source code. In addition, clicking the
registration ID displays Enrollment details, as shown below. The Enrollment details page is empty
immediately after enrollment, but the details will be displayed once the DPS instance begins to function
and completes enrollment on the IoT hub.

Figure 3-9 Enrollment details

This completes setting configuration on the Azure Portal.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 48 of 59
Jan.23.2024

3.2 Microsoft Azure Communication Settings
Configure settings in the sample project source code prepared as described in section 2.

3.2.1 Azure IoT Settings
Open the file src/sample_config.h in the sample_azure_iot_embedded_sdk folder of the sample project,
and configure the following settings.

(1) Parameter Settings
Define operating parameters for encryption, etc., in sample_config.h as shown below.

Table 3-1 Parameter Settings

Parameter Setting Value
Setting Value
in Sample Remarks

SEL_CIPHER_SUITE 0: TLS_ECDHE_RSA_WITH
_AES_128_CBC_SHA256 (default)

1: Select cipher suite

0

SEL_DEVICE_AUTH 0: Symmetric key
1: X.509 self-signed certificate
2: X.509CA signed certificate (not

supported)

1

SEL_DPS 0: IoT hub connection
(no DPS connection)

1: DPS connection + IoT hub
connection

1

SEL_TSIP_TLS_RSA_WITH
_AES_128_CBC_SHA

0: Not specified by client Hello
message

1: Specified by client Hello message

0 Setting has no
effect when
SEL_CIPHER_
SUITE = 0. SEL_TSIP_TLS_RSA_WITH

_AES_256_CBC_SHA
0: Not specified by client Hello

message
1: Specified by client Hello message

0

SEL_TSIP_TLS_RSA_WITH
_AES_128_CBC_SHA256

0: Not specified by client Hello
message

1: Specified by client Hello message

0

SEL_TSIP_TLS_RSA_WITH
_AES_256_CBC_SHA256

0: Not specified by client Hello
message

1: Specified by client Hello message

0

SEL_TSIP_TLS_ECDHE_RS
A_WITH_AES_128_CBC_SH
A256

0: Not specified by client Hello
message

1: Specified by client Hello message

0

Figure 3-10 Parameter Settings in sample_config.h

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 49 of 59
Jan.23.2024

(2) Azure IoT Hub DPS Authentication Information
Define in sample_config.h the Azure IoT hub DPS enrollment information created as described in 3.1.

[1] #define ENDPOINT: Service endpoint of connection target DPS
[2] #define ID_SCOPE: ID scope of connection target DPS
[3] #define REGISTRATION_ID: Registration ID of connection target DPS
[4] #define DEVICE_SYMMETRIC_KEY: Primary key of connection target DPS*1

Note: 1. The primary key only needs to be defined when Symmetric key was selected for Attestation

mechanism during DPS enrollment.

Enter values in the above macros between quote marks (" "), as shown below.

Figure 3-11 Authentication Information Settings in sample_config.h
Confirm the above authentication information on the Azure Portal. On the Azure home page, select the DPS
instance created as described in 3.1.2, then copy of setting values from the various pages shown and paste
them into the source code. [1] Service endpoint and [2] ID Scope can be displayed by selecting the DPS
instance and clicking Overview on the menu panel.

Figure 3-12 DPS Overview Page

[1]

[2]

[3]

[4]

[1]

[2]

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 50 of 59
Jan.23.2024

[3] Registration ID can be displayed by referring to the Registration ID list after selecting the DPS instance.

Figure 3-13 DPS Registration ID List
[4] Primary key only needs to be defined when Symmetric key was selected for Attestation mechanism
(SEL_DEVICE_AUTH defined as 0). Copy the Primary key from the Enrollment details page for a DPS
registration ID with Attestation mechanism set to Symmetric key. This setting is not necessary when
Attestation mechanism is set to X.509 client certificates.

Figure 3-14 Enrollment details Page when Attestation Mechanism is Symmetric Key

[3]

[4]

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 51 of 59
Jan.23.2024

(3) Connection Information When Not Using DPS
If no DPS connection is used, you will need to register a device on the IoT hub. Follow the steps in 3.1.3,
Create an IoT Device, in Visualization of Sensor Data using RX65N Cloud Kit and Azure RTOS to register a
device manually. In addition, you will need to configure IoT hub settings as described in step 8 of 3.2,
Software Preparation, in the above document. Configure the following IoT hub setting in the sample project.

• HOST_NAME
• DEVICE_ID
• DEVICE_SYMMETRIC_KEY (when using a symmetric key)

Also, refer to Table 3.1, Parameter Settings, and configure the SEL_DPS parameter for no DPS
connection.

Figure 3-15 Settings when Not Using DPS

3.2.2 IP Address Settings
When Ethernet-based communication is performed with the default settings of this sample project, DHCP is
used for network connection. If the DHCP function is disabled on the router to which the target board is
connected, configure settings as follows.

Open the file src/main.c in the sample_azure_iot_embedded_sdk folder, and add the line #define
SAMPLE_DHCP_DISABLE.

Open the file src/main.c in the sample_azure_iot_embedded_sdk folder, and enter values for IP
address, default gateway, DNS server address, and subnet mask.

If you use the CK-RX65N+RYZ014A (Cellular) board, you must specify the settings according to the SIM
card you use. The procedure for specifying these settings is described later.

https://www.renesas.com/us/en/search?keywords=%20R01AN6011

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 52 of 59
Jan.23.2024

1. In the sample_azure_iot_embedded_sdk folder, activate sample_azure_iot_embedded_sdk.scfg,
and then open the Components tab.

2. In the tree view on the left of the tab, under the RTOS Library folder, click to open the ewf node.
3. On the right of the tab, for the property named The SIM operator APN, set the access point of the SIM

card you use.
4. Save the file (sample_azure_iot_embedded_sdk.scfg), and then click the Generate Code button at the

top right of the window to generate code.

Figure 3-16 Setting the Access Point

3.2.3 Client Certificate Format Selection
By default, the RSA certificate type is enabled. ECDSA certificates are not supported by the sample project
described in this document. The relevant definition is located in
src/userdata_tsip/r_trust_certificate_data.h in the sample project folder.

Figure 3-17 Client Certificate Format Selection

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 53 of 59
Jan.23.2024

4. Building and Running the Project
Build the project created as described in sections 2 and 3. Before building the project, make sure to confirm
the items described in section 4.1.

4.1 Items to Confirm Before Building the Project
4.1.1 Settings for Renesas Starter Kit+ for RX65N-2MB
In the project of Renesas Starter Kit+ for RX65N-2MB, make sure that true is set for the following macro in
the sample_azure_iot_embedded_sdk/src/smc_gen/r_config/r_bsp_config.h file. This macro is used for
decision of whether to perform TSIP processing. If false is set, manually change it to true.

#define BSP_CFG_MCU_PART_ENCRYPTION_INCLUDED

Note that the above setting is reset to false when you generate new code.

4.1.2 Setting for Code Generation During Build
In this sample project, as described above, changes may have been made to some settings in files
generated by Smart Configurator, depending on the board. Such additional settings may be lost when you
generate new code. Therefore, perform steps 1 to 3 below to prevent all the source files from being
regenerated when building or cleaning the project.

1. In e2 studio’s Project Explorer view, right-click the target project and select Properties from the context
menu.

Figure 4-1 Context Menu of Project

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 54 of 59
Jan.23.2024

2. On the Properties dialog box, select Builders from the menu panel on the left. Then select SC Code
Generation Builder and click the Edit button.

Figure 4-2 Properties Dialog Box of Project

3. On the Configure Builder dialog box, uncheck all the boxes and click the OK button. Then click the

Apply and Close button on the Properties dialog box.
Configuring these settings will prevent unintended code generation.*1

Figure 4-3 Configure Builder Dialog Box

Note: 1. If you actually want to trigger automatic code generation, click the Generate Code button in Smart

Configurator.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 55 of 59
Jan.23.2024

4.2 Building the Project
Select Project → Build All to build the project. Note that a warning message appears at this time, but this
does not indicate a problem.

After the build finishes, connect the target board to the PC and router as shown in Figure 2.1. Then select
Run → Debug → 2 Renesas GDB Hardware Debugging to start debugging.

Also, if you connect J12 on the CK-RX65N board to a PC with a USB cable, you can monitor the operating
status using a terminal emulator program such as Tera Term. When you connect J12 to the PC, a port is
registered in Windows Device Manager. Configure the settings of the terminal emulator program using the
newly registered COM port number and connect to the target board. Configure the serial port communication
settings as follows.

• Baud rate: 115,200 bps
• Data bits: 8
• Stop bits: 1
• Parity: None

When you run the project, device registration (provisioning) on the IoT hub is performed via a DPS
connection. After registering the device on the IoT hub via the DPS connection, a connection is established
to the IoT hub and a message is output via MQTT.

The sample program reports the operating status as serial output to the terminal emulator, as shown in the
example screenshot below. Check the text displayed in the terminal emulator to confirm the following.

[1] Successful connection to DPS
[2] Successful connection to IoT hub by DPS
[3] Successful connection to registered device ID

Figure 4-4 Example Output to Terminal Emulator

[1] [2]

[3]

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 56 of 59
Jan.23.2024

4.3 Confirming Connection to Microsoft Azure
You can confirm the connection to Microsoft Azure, and confirm that uploaded data was successfully sent to
the Azure cloud, by using Azure IoT Explorer (preview). Refer to 3.5, Communication confirmation by Azure
IoT Explorer in Visualization of Sensor Data using RX65N Cloud Kit and Azure RTOS for details.
In Azure IoT Explorer (preview), click < connection target IoT hub > → < registration ID >, then click
Telemetry on the menu panel and click the Start button.*1 If received data appears below Receiving
events..., sending and receiving of messages is working properly.

Figure 4-5 Confirming Reception of Telemetry Messages in Azure IoT Explorer
Note: 1. When reception starts after clicking the Start button, the display changes to a Stop button as

shown in the screenshot.

4.3.1 Checking Registration Status
To confirm that a device is successfully registered on the IoT hub via DPS connection, proceed as described
below.
Select the connection target DPS in Azure Portal, click Manage enrollments on the Settings menu, and
select the Individual enrollments tab to display a list of registration IDs. Click the connection target
registration ID to display the Enrollment details page for the device.

Figure 4-6 List of Registration IDs

https://www.renesas.com/us/en/search?keywords=%20R01AN6011

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 57 of 59
Jan.23.2024

The registration status is displayed on the Enrollment details page for the device. Here you can confirm the
IoT hub to which the DPS instance is assigned and the device ID.

Figure 4-7 Enrollment details Page

4.3.2 Checking the Device
Confirm that the device has been added to the IoT hub registered on the DPS instance as described in 4.3.1.
On the Azure Portal home page, select the IoT hub registered on the DPS instance, then click Devices
under Device management on the menu panel. A list of devices is displayed, with the connected device
newly added to it.*1

Figure 4-8 IoT Hub Device List

Note: 1. If the device has not connected even once it will not appear in the list.

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 58 of 59
Jan.23.2024

5. Appendix
5.1 Details of the Security Key Management Tool
For details of the Security Key Management Tool, refer to the applicable document (downloadable from the
following website):

https://www.renesas.com/jp/ja/software-tool/security-key-management-tool

5.2 TLS Communication Performance Using TSIP Driver
For reference, Table 5-1 lists examples of handshake times when establishing a TLS connection and
application data transfer speeds after a TLS connection is established using the Renesas Starter Kit+ for
RX65N-2MB. The MCU’s internal timer was used to measure transfer times when uploading 4 KB of data
and downloading 1 MB of data. Five sets of transfers were performed, and the average times were
calculated. In these examples, using the TSIP driver reduced the handshake time when establishing a TLS
connection from 2.73 seconds to 0.34 seconds, boosted the upload transfer rate from 4.46 Mbps to
24.82 Mbps, and boosted the download transfer rate from 5.34 Mbps to 27.03 Mbps.

Table 5-1 Examples of TLS Communication Speeds Using TSIP Driver

Cipher Suite Block Cipher NetX Duo*1 NetX Duo w/ TSIP*2

TLS_RSA_WITH_AES_128_CBC_SHA 128-bit AES-CBC Connection:
2.73 seconds
Up: 4.46 Mbps
Down: 5.34 Mbps

Connection:
0.34 seconds
Up: 24.82 Mbps
Down: 27.03 Mbps

Notes: System clock (ICLK): 120 MHz
 TSIP operating clock (PCLKB): 60 MHz
 1. NetX Duo: Software processing
 2. NetX Duo: with TSIP: Using TLS APIs of TSIP driver

https://www.renesas.com/jp/ja/software-tool/security-key-management-tool

RX Family TLS Implementation Example Using TSIP Driver (Azure RTOS)

R01AN6948EJ0200 Rev.2.00 Page 59 of 59
Jan.23.2024

6. Revision History

Rev. Date
Description
Page Summary

1.00 Aug. 31, 2023 First edition issued.
1.10 Dec. 14, 2023 1,31 Added explanation for RX72N (Envision kit) compatibility.

1,9,13 Update IDE/Azure RTOS/RDP/OpenSLL version.
5 Modification of TLS flow with TSIP diagram
14-19 Added instructions on obtaining the root CA certificate

DigiCert Global Root G2.
20 Added instructions for setting the root CA certificate to be

used.
24 Add DigiCert files to list.
24,35 Added explanation of key data used for wrapping generated

by script.
2.00 Jan. 23, 2024 1 Added the “Important Notice” section.

1,2,8 Added descriptions with addition of target boards.
2 Added a description of support for CK-RX65N+RYZ014A

(Cellular), Renesas Starter Kit+ for RX65N-2MB, and CK-
RX65N Cellular. (This document basically provides
information about CK-RX65N.)

2,9 Updated the version of IDE/Azure RTOS/RDP.
2,5,7,9,
24,25,29,
30,34-41

Changed the key generation tool to the Security Key
Management Tool.

7,24,25,
29,30,
32-34

Modified terms of the key generation tool with the adoption of
the Security Key Management Tool.

10 Deleted the “tool” folder from the project folder because the
distribution method was changed with the change of the key
generation tool.

19 Eliminated the need for setting or selecting the root CA
certificate because all existing certificates are now verified.

19 Added a description of the default files provided in the sample
project so that root CA certificates can be registered.

22 Added “DigiCertGlobalRootG2.cer” in the “ca” folder.
23 Added a procedure for changing the file name of the root CA

certificate in DER format.
23,41,52 Edited paths because the folder that stores configuration files

was changed to “userdata_tsip”.
29,30,
34-40

Added a description of how to use the Security Key
Management Tool.

51,52 Added a description of the procedure for setting the access
point when using the CK-RX65N+RYZ014A (Cellular) board.

53 Deleted the NetXDuo Addons settings from the
“nx_secure_port.h” file because they are now included in a
patch file.

53 Added a procedure for checking the macro settings when
using the Renesas Starter Kit+ for the RX65N-2MB board.

58 Changed a sentence so that the user is informed of the
documents that provide detailed information about how to use
the Security Key Management Tool.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Advantages of TLS Communication Using TSIP
	1.2 TLS flow with TSIP
	1.3 Cipher Suites Supported by TSIP Driver
	1.4 TLS APIs of TSIP Driver
	1.5 Definitions of Terms

	2. Preparing the Sample Project
	2.1 Creating a Workspace
	2.2 Downloading the Project
	2.3 Importing the Project
	2.4 Key and Certificate Preparation
	2.4.1 Installing OpenSSL
	2.4.2 Obtaining Root CA Certificate
	2.4.3 Generating RSA Keys and Client Certificate
	2.4.4 Root CA Certificate Signature Generation and Certificate File Format Conversion
	2.4.5 Key Wrapping and Registration in the Project
	2.4.5.1 Creating a UFPK and W-UFPK
	2.4.5.2 Wrapping the Keying Data

	3. Operations on Microsoft Azure Portal
	3.1 Preparations for Connection to Azure IoT Hub (Azure Portal)
	3.1.1 Creating an IoT Hub
	3.1.2 Creating an IoT Hub Device Provisioning Service (DPS) Instance
	3.1.3 Device Provisioning Using the IoT Hub and DPS Instance

	3.2 Microsoft Azure Communication Settings
	3.2.1 Azure IoT Settings
	3.2.2 IP Address Settings
	3.2.3 Client Certificate Format Selection

	4. Building and Running the Project
	4.1 Items to Confirm Before Building the Project
	4.1.1 Settings for Renesas Starter Kit+ for RX65N-2MB
	4.1.2 Setting for Code Generation During Build

	4.2 Building the Project
	4.3 Confirming Connection to Microsoft Azure
	4.3.1 Checking Registration Status
	4.3.2 Checking the Device

	5. Appendix
	5.1 Details of the Security Key Management Tool
	5.2 TLS Communication Performance Using TSIP Driver

	6. Revision History

