LENESAS APPLICATION NOTE

RL78 Family RO1AN482F§,EJ01188
ev. 1.

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended Mar. 11, 2019

Introduction

Today, as automatic electronic controls systems continue to expand into many diverse applications, the requirement of
reliability and safety are becoming an ever increasing factor in system design.

For example, the introduction of the IEC60730 safety standard for household appliances requires manufactures to
design automatic electronic controls that ensure safe and reliable operation of their products.

The IEC60730 standard covers all aspects of product design but Annex H is of key importance for design of
Microcontroller based control systems. This provides three software classifications for automatic electronic controls:

1. Class A: Control functions, which are not intended to be relied upon for the safety of the equipment.

Examples: Room thermostats, humidity controls, lighting controls, timers, and switches.

2. Class B: Control functions, which are intended to prevent unsafe operation of the controlled equipment.

Examples: Thermal cut-offs and door locks for laundry equipment.

3. Class C: Control functions, which are intended to prevent special hazards

Examples: Automatic burner controls and thermal cut-outs for closed.

Appliances such as washing machines, dishwashers, dryers, refrigerators, freezers, and Cookers / Stoves will tend to fall
under the classification of Class B.

This Application Note provides guidelines of how to use flexible sample software routines to assist with compliance
with IEC60730/60335 class B safety standards.

These software routines provided are designed to be used after the system power on, or reset condition and also during
the application program execution. The end user has the flexibility of what routines are included and how to integrate
these routines into their overall application system design. This document and the accompanying test harness code
provide examples of how to do this.

Note. This document is based on the European Norm EN60335-1:2002/A1:2004 Annex R, in which the Norm I[EC
60730-1 (EN60730-1:2000) is used in some points. The Annex R of the mentioned Norm contains just a single sheet
that jumps to the IEC 60730-1 for definitions, information and applicable paragraphs.

Target Devices
RL78/G14 Microcontroller

RO1AN1062EJ0110 Rev. 1.10 Page 1 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Contents
1. Self Test Libraries INtrodUCLIONooooiiiiiiiiiiiiiee e 3
2. Self Test Library FUNCHONSooiiiiiiie ettt e et e e e st e e e s ente e e e s enteeeessneaeaean 4
P B O o U B =T] (=T o £ RSP RROTIR 4
2.2. Invariable Memory Test — FIash ROMccooiiiiiiiiie ettt e e a e e 12
2.3. Variable Memory - SRAM ... e 17
2.4, SYSEM CIOCK TS ...t ettt e ettt e e s et e e e s bt e e e e sbe e e e e annneeeeanneeas 27
K T) = T 4] o] (SR U L= To [RO OPPRROTRRIN 32
T D 01 U I V=T or=Y [o 32
T o P11 o I @ 1Y IV =Ty 1 To7= 1 (o] o NS 33
TR T ¥ Y B =Y 1 o= 4[] TP PPPRR 34
3.4. System CloCK VerifiCationoouiiiiiiiiii et ee e 35
KRS 00 o [00 =T =T [RSP OPPRROTRRRN 35
S = 1Y 1o a1 E=T o 1T S 36
4.1. Development ENVIFONMENToooiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee ettt ettt eeeeeeees 36
B 1S L ST 1 1] o - T PSRRI 36
4.3. Benchmark teSt rESUIS ... e e e e e e e aeeee s 39
5. Additional HardWare RESOUICES............uuiiiiiieeeitcee ettt e e e e e e te e e e e e e e e eaaaae e e e eaeeeeees 40
5.1. Additional Safety FUNCHONS. ...t eneeee e 40
5.2. Additional Self TeSt FUNCHONS...........oiiiiii e e e e e e e e e 45
6. Related Application NOte..........ooooi i 46
RNV (o] g T =T olo] (o [N 47

General Precautions in the Handling of MPU/MCU Products.. T5—! Ty I— 9 REEShTLEHE
Ao

RO1AN1062EJ0110 Rev. 1.10 Page 2 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

1. Self Test Libraries Introduction

The self test library (STL) provides self test functions covering the CPU registers, internal memory and system clock.
The library test harness provides an Application Programmers Interface (API) for each of the self test modules, which
are described in this applications note. These can be used in customer’s application wherever required.

For the purposes of VDE certification, the self test library functions are built as separate modules. The CS+ test harness
allows each of the tests functions to be selected in turn and run as a stand alone function.

The system hardware requirements include that at least two independent clock sources are available, e.g. Crystal /
ceramic oscillator and an independent oscillator or external input source. The requirement is needed to provide an
independent clock reference for monitoring the system clock. The RL78 is able to provide these using the High speed
and Low speed internal oscillators which are independent of each other.

Equally the application can provide a more accurate external reference clock or external crystal/resonators for the main
system clock can equally be used.

call

Application STL
Software return value

fin ¢ % 3
_l_l_l_[‘:'fmt —
System hardware __||:_| Sub Clock

Figure 1 Self Test Library (STL) Configuration

The following CPU self test functions are included in the RL78 self test library.
e CPU Registers

The following CPU registers tests are included in this library

All CPU working Registers in all four register banks, Stack Pointer (SP), Processor Status
word (PSW), Extension registers ES and CS, Program Counter (PC).

Internal data path are verified as part of the correct operation of these register tests

IEC Reference - IEC 60730: 1999+A1:2003 Annex H - Table H.11.12.1 CPU.

e Invariable Memory

This tests the MCU internal Flash memory
IEC Reference - IEC 60730: 1999+A1:2003 Annex H — H2.19.4.1 CRC — Single Word.

e Variable Memory

This tests the Internal SRAM memory
IEC Reference - IEC 60730: 1999+A1:2003 Annex H — H2.19.4.1 CRC — Single Word.

e System Clock: Verifies the system clock operation and correct frequency against a reference clock
source(Note this test requires the use of an internal or external independent reference clock)IEC Reference
- IEC 60730: 1999+A1:2003 Annex H— H2.19.4.1 CRC - Single Word.

RO1AN1062EJ0110 Rev. 1.10 Page 3 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended
2. Self Test Library Functions

2.1. CPU Register Tests

This section describes CPU register tests routines. The test harness control file ‘main.c’ provides examples of the API
for each of the CPU register tests using “C” language.

These modules test the fundamental aspects of the CPU operation. Each of the API functions has a return value in order
to indicate the result of a test.

Each of the test modules saves the original contents of the register(s) under test and restores the contents on completion
The following CPU registers are tested:

e Working registers and Accumulator:

AX, HL, DE, BC in Register Banks 0 — 3

16-bit processing 8-bit processing
FFEFFH

H
Register bank 0 HL

FFEF8H

L
i

Register bank 1 |

D
‘ DE
| E
FFEFOH |
| B
Register bank 2 '| BC
|
C
FFEESH \
|
l‘ A
Register bank 3 | AX
|

| X
FFEEOH 1
15 0

7

Figure 2 Working Register Configuration

e Stack Pointer (SP)

15

0
SP |SP15|SP14|SP13|SP12|SP11|SP10| SP9 | 5P |SPT |SP6 | S5P5 | SP4 | SP3| SP2| 5P1 [SPO

Figure 3 Stack Pointer Configuration

Processor Status Word (PSW)

PSW IE z

ABS1 | AC |RBSO| ISP1 | ISPO | CY

Figure 4 PSW Register Configuration

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139

Page 4 of 49
RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

e Code Address Extension Register (CS)

7 8 5 4 3 2 1 0
cs | o] o] o | o [csa|cre|ocri|ecr|

Figure 5 Working Register Configuration

o Data Address Extension Register (ES)

7 6 5 4 3 2 1 0
ES 0 0 0 0 ES3 ES2 ESA1 ESO

Figure 6 Working Register Configuration

e Program Counter (PC)
159

PC

Figure 7 Program Counter Configuration

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139 RENESAS

Page 5 of 49

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.1.1. CPU Register Tests - Software API

Table 1: Source files: CPU Working Registers Tests

STL File name Header Files

stl_RL78 registertest.asm None

Test Harness File Names Header Files

main.c stl.h
stl_global_data_example.c main.h
stl_main_example_support function.c | stl_gobal_data_example.h
stl_peripheralinit.c

Syntax

char stl_RL78_registertest(void)

Description

This module tests the RL78 working registers and accumulators.
Registers AX, HL, DE, BC in all three register banks (Banks 0, 1, 2, 3)
These registers are tested as16bit registers.
The following tests are performed for each register:

1. Write h'S555 to the register being tested.

2. Read back and check they are equal.

3. Write h"AAAA to the register being tested.

4. Read back and check they are equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test. In addition, Register Bank 0
(RB0) must be selected when this test starts.

The original register contents are restored on completion of the test
The function “indicate test result” will be called by the test harness control files (main.c) to process the test result

Note: Function “indicate test result” is located in the module stl_main_example support function.c

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

Test result of CPU register C
char

0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10 Page 6 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Table 2: Source files: CPU Registers Tests — PSW

STL File name

Header Files

stl. RL78 registertest_psw.asm

stl.h

Test Harness File Names

Header Files

main.c
stl_global_data_example.c
stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Syntax

char stl_RL78_registertest_psw(void)

Description

Test the 8bit Processor Status Word (PSW) register

The following tests are performed:

1. Write h'S5 to the register being tested.

2. Read back and check it is equal.

3. Write h'AA to the register being tested.

4. Read back and check that it is equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function “indicate test_result” will be called by the test harness control files (main.c) to process the test result

Note: Function “indicate_test result” is located in the module stl_main_example support function.c

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result of CPU register C

0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139

Page 7 of 49
RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Table 3: Source files: CPU Registers Tests - SP

STL File name

Header Files

stl. RL78 registertest_stack.asm

stl.h

Test Harness File Names

Header Files

main.c
stl_global_data_example.c
stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Syntax

char stl_RL78_registertest_stack(void)

Description

Test the 16bit Stack Pointer (SP) register

The following tests are performed:

1. Write h'S555 to the register being tested.

2. Read back and check it is equal.

3. Write 'AAAA to the register being tested.

4. Read back and check that it is equal.

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function “indicate test_result” will be called by the test harness control files (main.c) to process the test result

Note: Function “indicate_test result” is located in the module stl_main_example support function.c

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result of CPU register C

0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139

Page 8 of 49
RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Table 4: Source files: CPU Registers Tests - CS

STL File name

Header Files

stl. RL78 registertest_cs.asm

stl.h

Test Harness File Names

Header Files

main.c
stl_global_data_example.c
stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Syntax

char stl_RL78_registertest_cs(void)

Description

Test the 8bit code extension (CS) register

The following tests are performed:

1. Write h'05 to the register being tested.

2. Read back and check it is equal.

3. Write h'0A to the register being tested.

4. Read back and check that it is equal.

Please note that the top 4 bit are fixed to “0”

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function “indicate test_result” will be called by the test harness control files (main.c) to process the test result

Note: Function “indicate_test result” is located in the module stl_main_example support function.c

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result of CPU register C

0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139

Page 9 of 49
RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Table 5: Source files: CPU Registers Tests - ES

STL File name

Header Files

stl. RL78 registertest_es.asm

stl.h

Test Harness File Names

Header Files

main.c
stl_global_data_example.c
stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Syntax

char stl_RL78_registertest_es(void)

Description

Test the 8bit data extension (ES) register

The following tests are performed:

1. Write h'05 to the register being tested.

2. Read back and check it is equal.

3. Write h'0A to the register being tested.

4. Read back and check that it is equal.

Please note that the top 4 bit are fixed to “0”

It is the calling function’s responsibility to ensure no interrupts occur during this test.

The original register content is restored on completion of the test

The function “indicate test_result” will be called by the test harness control files (main.c) to process the test result

Note: Function “indicate_test result” is located in the module stl_main_example support function.c

Input Parameters

NONE N/A

Output Parameters

NONE N/A

Return Values

char

Test result of CPU register C

0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139

RENESAS

Page 10 of 49

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Table 6: Source files: CPU Registers Tests - PC

STL File name Header Files
stl_RL78 registertest_pc.asm stl.h

Test Harness File Names Header Files
main.c main.h
Syntax

char stl_RL78_registertest_pc(void)

Description

Test the program counter (PC) register
The following tests are performed:
1. Call the program counter (PC) test function with call instruction.
2. The test function sets return address saved on the stack in the L register - DE register and returns.

3. After calling the test function with the call instruction, confirm that the address (PC) of the instruction placed
next to the call instruction is equal to the return value (L - DE).

The first 4 bits of the L register are fixed "0" values.
It is the calling function’s responsibility to ensure no interrupts occur during this test.
The original register content is restored on completion of the test.

The function “indicate test result” will be called by the test harness control files (main.c) to process the test result
Note: Function “indicate test result” is located in the module stl main _example support function.c

Input Parameters

NONE N/A
Output Parameters
NONE N/A

Return Values

char

Test result of CPU register C

0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10 Page 11 of 49

Nov. 15, 20139

RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.2. Invariable Memory Test — Flash ROM

This section describes the Flash memory test using CRC routines. CRC is a fault / error control technique which
generates a single word or checksum to represent the contents of memory. A CRC checksum is the remainder of a
binary division with no bit carry (XOR used instead of subtraction), of the message bit stream, by a predefined (short)
bit stream of length n + 1, which represents the coefficients of a polynomial with degree n. Before the division "n”
zeros are appended to the message stream. CRCs are popular because they are simple to implement in binary hardware

and are easy to analyse mathematically.

The Flash ROM test can be verified by generating a reference CRC value for the contents of the ROM and storing this
in memory. During the memory self test the same CRC algorithm is used to generate a CRC value, which is compared
with the reference CRC value. The technique recognises all one-bit errors and a high percentage of multi-bit errors.

The complicated part of using CRCs is if you need to generate a CRC value that will then be compared with other CRC
values produced by other CRC generators. This proves difficult because there are a number of factors that can change
the resulting CRC value even if the basic CRC algorithm is the same. This includes the combination of the order that
the data is supplied to the algorithm, the assumed bit order in any look-up table used and the required order of the bits
of the actual CRC value. Both the hardware and software self test functions are able to executed iteratively, thus
allowing the option of a full CRC calculation to be made or a CRC calculation of a smaller segments suitable to the
operation of the end application.. For a full calculation (or first part of an iterative calculation), a starting value of
h’0000 is used or the previous partial result is provided as the starting point for the next calculation stage.

The hardware module is “the general-purpose CRC function” embedded in RL78 device. The hardware module while
using the same fundamental CRC algorithm uses a different data format for calculating the reference CRC value. Here a
compatible CRC calculation routine is provided as part of the test harness for reference.

2.2.1. CRC16-CCITT Algorithm

The RL78 includes a CRC module that includes support for the CRC16-CCITT. Using this software to drive the CRC
module produces this 16-bit CRC16-CCITT:

Software Algorithm

CCITT 16 Polynomial = 0x1021 (x'® + x'2 + x> + 1)
Input Data Width = 8 bits

Data Input = Not Bit Reversed

Initial value = 0x0000 or 16 bit previous partial result
Calculated Result = 16 bits (not bit reversed)

Hardware Algorithm

CCITT 16 Polynomial = 0x1021 (x'® + x'2 + x> + 1)
Input Data Width = 8 bits

Data Input = Bit Reversed

Initial value = 0x0000 or 16 bit previous partial result
Calculated Result = 16 bits (Bit reversed)

RO1AN1062EJ0110 Rev. 1.10 Page 12 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.2.2. Software CRC - Software API

The functions in the remainder of this section are used to calculate a CRC value and verify its correctness against a
reference value stored in Flash ROM.

Table 7: Source files: Software CRC

STL File name Header Files

stl. RL78 sw_crc.asm stl.h

Test Harness File Names Header Files

main.c main.h
stl_global_data_example.c stl_gobal_data_example.h
stl_main_example_support function.c

stl_peripheralinit.c

Syntax

unsigned short stl_RL78_sw_crc_asm (unsigned short crc, CHECKSUM_CRC_TEST_AREA *p);

Description

This function calculates a CRC value over the address range supplied using the software CRC calculation module.
The start address and calculation range (Length) are passed by the calling function via the structure shown in the
table below. The partial or full calculated result is returned for verification (if required) against the reference CRC
value.

The function “indicate test result” will be called by the test harness control files (main.c) to process the test result
Note: Function “indicate test result” is located in the module stl main example support function.c

Input Parameters

unsigned short crc Value for starting the CRC calculation

CHECKSUM_CRC_TEST AREA *p | Pointer to the structure where the start address and calculation range is located

Output Parameters

NONE N/A

Return Values

16 bit calculated CRC value (Full or partial result)

Unsigned short CPU Register BC

RO1AN1062EJ0110 Rev. 1.10 Page 13 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Source files: Software CRC Parameter Structure

The following structure is implemented in the files stl.h and main.c and is used to provide calculation parameters for the
for the CRC function.

Syntax

static CHECKSUM_CRC_TEST_AREA checksum_crc;
Description

Structure declaration and instance providing the parameters to be passed to software CRC module
(stl. RL78 sw_crc.asm) by the calling function in main.c

Input Parameters

Unsigned long length: Range (length = number of bytes) of memory to be tested.

Unsigned long start_address Start address for CRC calculation

Output Parameters

NONE N/A

Return Values

NONE N/A

RO1AN1062EJ0110 Rev. 1.10 Page 14 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.2.3. Hardware CRC - Software API

Table 8: Source files: Hardware CRC Calculation

STL File name

Header Files

stl_RL78 peripheral_crc.asm

<ior5f100le.h>
<ior5f100le_ext.h>
stl.h

Test Harness File Names

Header Files

main.c
stl_global_data_example.c
stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Syntax

unsigned short stl_RL78_peripheral_crc(unsigned short gcrc, CHECKSUM_CRC_TEST_AREA *p)

Description

This function calculates a CRC value over the address range supplied using the hardware CRC peripheral (general-
purpose CRC). The start address and calculation range (Length) are passed by the calling function via the structure
detailed in the table below. The calculated result is returned. This can be either a partial result of full result depending

upon the parameters provided.

The function “indicate test result” will be called by the test harness control files (main.c) to process the test result
Note:Function “indicate_test result” is located in the module stl main_example support function.c

Input Parameters

unsigned short gerc Value for starting the CRC calculation

Pointer to the structure where the start address and calculation range is

CHECKSUM_CRC_TEST_AREA *p located

Output Parameters

NONE N/A

Return Values

unsigned short

16 bit calculated CRC value (Full or partial result)

CPU Register BC
RO1AN1062EJ0110 Rev. 1.10 Page 15 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Source files: Hardware CRC Parameter Structure

Syntax

static CHECKSUM_CRC_TEST_AREA checksum_crc;

Description

Structure declaration and instance providing the parameters to be passed to the hardware CRC module
(stl RL78 peripheral crc.asm) by the calling function in main.c.

Note: This is the same structure as used by the software CRC function.

Input Parameters

unsigned int length;

Range (length = number of bytes) of memory to be tested.

unsigned int start_address

Start address for CRC calculation

Output Parameters

NONE N/A
Return Values
NONE N/A

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139

RENESAS

Page 16 of 49

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.3. Variable memory - SRAM

March Tests are a family of tests that are well recognised as an effective way of testing RAM.

A March test consists of a finite sequence of March elements, where a March element is a finite sequence of operations
applied to every cell in the memory array before proceeding to the next cell.

In general the more March elements the algorithm consists of, the better will be its fault coverage but at the expense of a
slower execution time.

The algorithms themselves are destructive (they do not preserve the current RAM values). It is the user’s responsibility
to preserve the Ram contents during testing after the application system has been initialised or while in operation The
system March C and March X test modules are design such that small parts of the Ram area can be tested, thus
minimising the need to provide a large temporary area to save the data under test. Additional version of the test module
(“stl. RL78 march c initial” and “stl RL78 march x initial”), are included that are designed to run before the system
has been initialised, so that the complete memory area can be tested before starting the main application.

As the area of RAM being tested can not be used for anything else while it is being tested, making the testing of RAM
used for the stack particularly difficult. Practically this area can only be tested before the application C-Stack is
initialised or after the application operation is complete.

The following section introduces the specific March Tests.

2.3.1. Algorithms

1) March C

The March C algorithm (van de Goor 1991) consists of 6 March elements with a total of 10 operations. It detects the
following faults:

1. Stuck At Faults (SAF)
* The logic value of a cell or a line is always 0 or 1.

2. Transition Faults (TF)
* A cell or a line that fails to undergo a 0—1 or a 1—0 transition.

3. Coupling Faults (CF)
* A write operation to one cell changes the content of a second cell.

4. Address Decoder Faults (AF)
* Any fault that affects address decoding:
» With a certain address, no cells can be accessed.
* A certain cell is never accessed.
» With a certain address, multiple cells are accessed simultaneously.
* A certain cell can be accessed by multiple addresses.

The usual March C algorithm employs 6 March elements:-

1. Write all zeros to array (<>(w0))
2. Starting at lowest address, read zeros, write ones, increment up array bit by bit. (>(r0,w1))
3. Starting at lowest address, read ones, write zeros increment up array bit by bit. (>(rO,w1))
4. Starting at highest address, read zeros, write ones, decrement down array bit by bit. (<(rO,w1))
5. Starting at highest address, read ones, write zeros, decrement down array bit by bit. (<(r1,w0))
6. Read all zeros from array. (<>(10))
RO1AN1062EJ0110 Rev. 1.10 Page 17 of 49

Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2) March X

The March X algorithm is a simpler and therefore faster algorithm, but not as thorough as it consists of only four March
elements with a total of four operations

Stuck At Faults (SAF)
Transition Faults (TF)

Inversion Coupling Faults (Cfin)
Address Decoder Faults (AF)

L=

These are the 4 March elements:-

1. Write all zeros to array (<>(w0))
2. Starting at lowest address, read zeros, write ones, increment up array bit by bit. (>(1r0,w1))
3. Starting at highest address, read ones, write zeros, decrement down array bit by bit. (<(rl,w0))
4. Read all zeros from array. (<>(r0))
RO1AN1062EJ0110 Rev. 1.10 Page 18 of 49

Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.3.2. Variable Memory Test - Software API

2.3.2.1. System March C

The system March C test is designed to run after the application system has been initialised and is executed using
normal function call from the test harness, thus using some C stack resources. The module can be used to test part or all
of the Ram area, but as the test is destructive, care should be taken to buffer the area being tested Therefore it is not
advised to use this module to test the whole RAM memory area in a single operation. In addition, make sure not to
destroy the RAM area used by this test itself as the stack area.

This test is configured to use 8 bit RAM accesses, and can allow a single byte to be tested. However, for all faults types
to be detected it is important to test a data range bigger than one byte.

Table 9: Source files: System March C

STL File name Header Files

st RL78 march_c.asm stl.h

Test Harness File Names Header Files

main.c main.h
stl_global_data_example.c stl_gobal_data_example.h
stl_main_example_support function.c

stl_peripheralinit.c

Declaration

char stl_RL78_march_c(unsigned char __far *addr, unsigned short num)

Description

This function tests the Ram memory using the March C algorithm over the address range supplied by the calling
function. The result status (Pass / Fail) is returned. This module is designed to be executed after the application
system has been initialised.

The function “indicate test result” will be called by the test harness control files (main.c) to process the test result
Note: Function “indicate test result” is located in the module stl_main_example support function.c

Input Parameters

unsigned char __far *addr | Pointer to the start address of the RAM to be tested.

unsigned short num The range (Number of bytes) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

Test status result contained in CPU register C

h .
char 0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10 Page 19 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.3.2.2. System March X

The system March X self test function is the essentially the same as the system March C module except that it only
implements the reduced March X algorithm. The module is designed to run after the application system has been
initialised and so should not be used to test the whole memory area in a single operation. In addition, make sure not to
destroy the RAM area used by this test itself as the stack area.

This test is configured to use 8 bit RAM accesses, and can allow a single byte to be tested. However, for all faults types
to be detected it is important to test a data range bigger than one byte.

Table 10: Source files:

STL File name Header Files

stl_RL78 march_x.asm stl.h

Test Harness File Names Header Files

main.c main.h
stl_global_data_example.c stl_gobal_data_example.h
stl_main_example_support function.c

stl_peripheralinit.c

Declaration

char stl_RL78 march_x(unsigned char __far *addr, unsigned short num)

Description

This function tests the Ram memory using the March X algorithm over the address range supplied by the calling
function. The result status (Pass / Fail) is returned. This module is designed to be executed after the application
system has been initialised.

The function “indicate test result” will be called by the test harness control files (main.c) to process the test result
Note: Function “indicate_test result” is located in the module stl_ main_example support function.c

Input Parameters

unsigned char __far *addr | Pointer to the start address of the RAM to be tested.

unsigned short num The range (Number of bytes) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

Test result of CPU register C

h .
char 0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10 Page 20 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.3.2.3. Initial March C
The initial March C test is designed to run before the application system has been initialised and is executed without
using function calls from the test harness. Entry to the self test is made by a “jump” from the modified “startup.asm”
module and return to “startup.asm” module is also made with a “jump”. The test status result is contained in the 8bit
accumulator (A). Therefore this module is designed to provide a complete RAM test before the system is started and the
“C” environment is initialised.

This test function is configured to use 8 bit RAM accesses.

Table 11: Source files: Initial March C

STL File name Header Files
stl_ RL78 march_c_initial.asm None

Test Harness File Names Header Files
startup.asm None
Declaration

stl_RL78 march_c _initial

Description

This function tests the Ram memory using the March C algorithm over the address range supplied by the calling
function. The result status (Pass / Fail) is returned. This module is designed to be executed before the application
system has been initialised and therefore does not use any function calls.

The function “indicate test result” will be called by the test harness control files (main.c) to process the test result
Note: Function “indicate_test result” is located in the module stl_ main_example support function.c

Input Parameters

CPU Register AX 16bit Register holding the start address of the RAM to be tested.

CPU Register BC 16bit Register holding the range (Number of bytes) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

Test status result
CPU Register A

0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10 Page 21 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.3.2.4. Initial March X
The initial March C test is designed to run before the application system has been initialised and is executed without
using function calls from the test harness. Entry to the self test is made by a “jump” from the modified “startup.asm”
module and return to “startup.asm” module is also made with a “jump”. The test status result is contained in the 8bit
accumulator (A). Therefore this module is designed to provide a complete RAM test before the system is started and the
“C” environment is initialised.

This test function is configured to use 8 bit RAM accesses.

Table 12: Source files: Initial March X

STL File name Header Files
stl_ RL78 march_x_initial.asm None

Test Harness File Names Header Files
startup.asm None
Declaration

stl_RL78 march_x_initial

Description

This function tests the Ram memory using the March X algorithm over the address range supplied by the calling
function. The result status (Pass / Fail) is returned. This module is designed to be executed before the application
system has been initialised and therefore does not use any function calls.

The function “indicate test result” will be called by the test harness control files (main.c) to process the test result
Note: Function “indicate_test result” is located in the module stl_ main_example support function.c

Input Parameters

CPU Register AX 16bit Register holding the start address of the RAM to be tested.

CPU Register BC 16bit Register holding the range (Number of bytes) of the RAM to be tested.

Output Parameters

NONE N/A

Return Values

Test result of CPU register A
CPU Register A

0 = Test passed. 1 = Test or parameter check failed.

RO1AN1062EJ0110 Rev. 1.10 Page 22 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.3.2.5. Stack area test (March C)

Use C stack resource to execute with normal function call from test harness. It is possible to test all of the STACK area.
Since the test is destructive, test after saving the current state to the buffer. It is possible to partially test by switching
the offset of the STACK TEST AREA parameter for each test.

RAM test is performed using System March C.

Table 13: Source files: Stack area test (March C)

STL File name Header Files

stl. RL78 RamTest Stacks c.asm None

Test Harness File Names Header Files

main.c main.h

Declaration

char stl_RL78 RamTest_Stacks_c(STACK_TEST_AREA *p)

Description

Switch the stack pointer (SP) to the specified area, test the address range of the specified buffer RAM using the
March C algorithm, and if the result (pass / fail) is normal, the contents of the stack area to the buffer RAM. Next, we
use the March C algorithm to test the stack area and restore the contents saved in the buffer RAM and the stack
pointer (SP). And it returns the test result (pass / fail). This module is executed after initialization of the application
system.

The test harness control file (main.c) calls the function "indicate test result" to process the test result.

Note: The function "indicate test result" is in the module stl_main_example support function.c.

Input Parameters

STACK_TEST AREA *p | Pointer to structure storing buffer RAM / size / new stack area

Output Parameters

NONE N/A

Return Values

Test result of CPU register C

h .
char 0 = Test passed. 1 = Test or parameter check failed.

RO1AN1062EJ0110 Rev. 1.10 Page 23 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Source files: Stack area test parameter structure

Declaration

static STACK_TEST_AREA stack_test

Description

Structure declarations and instances that provide the parameters passed from the main.c caller function to the stack
area test module (stt RL78 RamTest Stacks c.asm).

Note: This is the same as the structure of the stl RL78 RamTest Stacks x function.

Input Parameters

char *pWork; Start address of the area to save the contents of the stack
unsigned short length Size of test target

unsigned short offset Stack area to be tested (offset from stack TOP)

char *pNewSp Stack pointer to temporarily use during testing

Output Parameters

NONE N/A

Return Values

NONE N/A
STACK *pWork
AREA
length
offset
STACK Top
RO1AN1062EJ0110 Rev. 1.10 Page 24 of 49

Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.3.2.6. Stack area test (March X)

Use C stack resource to execute with normal function call from test harness. It is possible to test all of the STACK area.
Since the test is destructive, test the current state after saving it to the buffer. You can partially test by switching the
offset of the STACK TEST_ AREA parameter for each test.

RAM test is performed using System March C.

Table 14: Source files: Stack area test (March X)

STL File name Header Files

stl. RL78 RamTest Stacks x.asm None

Test Harness File Names Header Files
main.c main.h
Syntax

char stl_RL78_RamTest_Stacks_x(STACK_TEST_AREA *p)

Description

Switch the stack pointer (SP) to the specified area, test the address range of the specified buffer RAM using the March X
algorithm, and if the result (pass / fail) is normal, the contents of the stack area To the buffer RAM. Next, we use the
March X algorithm to test the stack area and restore the contents saved in the buffer RAM and the stack pointer (SP).
And it returns the test result (pass / fail). This module is executed after initialization of the application system.

The test harness control file (main.c) calls the function "indicate test result" to process the test result.

Note: The function "indicate test result” is in the module stl_main_example_ support function.c.

Input Parameters

STACK_TEST AREA *p | Pointer to structure storing buffer RAM / size / new stack area

Output Parameters

NONE N/A

Return Values

Test result of CPU register C

char 0 = Test passed. 1 = Test or parameter check failed

RO1AN1062EJ0110 Rev. 1.10 Page 25 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Source files: Stack area test parameter structure

Declaration

static STACK_TEST_AREA stack_test

Description

Structure declarations and instances that provide the parameters passed from the main.c caller function to the stack
area test module (stt RL78 RamTest Stacks x.asm).

Note: This is the same as the structure of the stl RL78 RamTest Stacks c function.

Input Parameters

char *pWork: Start address of the area to save the contents of the stack
unsigned short length Size of test target

unsigned short offset Stack area to be tested (offset from stack TOP)

char *pNewSp Stack pointer to temporarily use during testing

Output Parameters

NONE N/A
Return Values
NONE N/A
RO1AN1062EJ0110 Rev. 1.10 Page 26 of 49

Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

2.4. System Clock Test

Two self test modules (hardware and software base) are provided for the RL78 self test library in order to be able to test
the internal system clock (CPU and Peripheral clocks). The software measurement module is included for backward
compatibility with previous products and also to allow for any RL78 devices where the Timer Array does not include
the additional hardware capability, or that the timer is used by the application and is not available to be used as part of
the MCU self tests. These modules can be used by the application to detect the correct operation and deviation in the
main system clock during operation of the application. Please note that if the internal low speed oscillator is used for
measurement, the accuracy of the system clock measurement will be reduced due the greater tolerance of the internal
low speed oscillator. Therefore only the relative operation of the system clock can be obtained, which should still be
sufficient to establish that the system clock is operating correctly and within acceptable limits.

The principle behind both measurement approaches is that if the operation frequency of the main clock deviates during
runtime from a predefined range, then this can be detected by the system. The accuracy of the measurement obviously
depends on the accuracy of the reference clock source. For example an external signal input or 32 KHz crystal can
provide a more accurate measurement of the system clock than the internal low speed oscillator. This however does
require the extra components.

A “Pass / Fail” status of the test is returned. Also implemented is a “No Reference Clock” detection scheme which
returns a different status value to the normal test, in order to identify the appropriate fault state. Both the software and
hardware measurement function use the same return status format.

The modules compare the measured (captured) time is within a reference window (upper and lower limit values) using
the user defined reference values set in the “stl_clocktest h” header file. This header file defines the reference values
for both software and hardware measurements and also the input test port pin for the software measurement.

2.4.1. Hardware Measurement

All current RL78 devices include an option in the Timer Array Unit (TAU) channel 5 that provides additional input
capture sources that are designed to be able to test the system clock operation. The extra capture inputs are selected as
part of the “safety” register (TISO) and include the following:-

e The internal Low-speed oscillator (fiL)
e External 32KHz Oscillator (Sub Clock) (fsub)
e External signal input (TIOS)

Ti input select T2 €
e Channel 2 T e
Ts2|Tis1| TIso _?/ TN 003
Ly | > — INTTM03
TI03 @ Channel 3) INTTMO3H
o ™
> L TOO4
TIO4 @=—t = INTTMO4
l _ Channel 4 J
TN
TSUB _ E /_ =@ TO0S
fil — g I
2 Channel 5 INTTMOS
e — N —
- N
Figure 8 Timer Array Unit Channel 5 Configuration
R0O1AN1062EJ0110 Rev. 1.10 Page 27 of 49

Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

The principle behind the hardware measurement is based on the input capture measurement of the reference clock in
TAU channel 5. As this is a hardware capture measurement the time captured is the “period” of the reference clock as
that of the system clock. This is a more accurate method of measurement than the software approach.

The measurement sequence is
e Synchronise to the reference clock (Wait for first capture event)
e Wait for the next capture event

e Compare the value in the capture register against the high and lower limit reference values

The test harness provides an example based on the following settings
System clock = 32MHz

Reference Clock = 32KHz

Therefore the calculation is simply 32000000 / 32768 = 976 (h’3D0)

An allowance should be made for capture value variances in the upper and lower reference values

2.4.2. Software Measurement

The principle behind the software measurement is based on a software counter measuring the transition on the test port
pin. The actual comparison values can be a mix of calculation and measurement as it is difficult to fully calculate the
measurement value due to variances in the synchronisation and monitoring of the input state.

The measurement sequence is
e Synchronise to the reference clock (high to low transition on the input pin)
e Wait for the next low to high transition and then start the software counter
e Increment the software count until the next high to low transition

e Compare the software count value against the high and lower limit reference values

The basic calculation is based on the following equation
System Clock / (Reference Clock / 2) x the number of clock cycles executed in the count loop

Note: The measurement period of the software counter is based on half the reference clock
Using the example settings provided in the test harness project
The System clock is 32MHz and the reference clock is the Sub Clock 32KHz then the calculation is

32000000 / (32768 / 2) x Loop Count

The cycle count can be calculated as shown in the code extract in figure 9 below

Y the reference clock = 15.26uS (32KHz / 2)

The loop count of the measurement period (measure high time) is 6 clock cycles

At 32MHz this is 187.5nS (6 x 31.25n8S)

Therefore the approximate software count for the test harness example is 15.26uS / 187nS = 82 (h’52)

RO1AN1062EJ0110 Rev. 1.10 Page 28 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

. Synchronise to reference signal
wiait_for_low:
INCWY A . Mo signal detection counter
CMPWY AX, #0xFFFF
BZ clock_errorl . Cwver flow - no signal detected return with errar
BT TESTPORT, wait_for_low ; wiait for low signal
MOV A, #0x0000 . Signal detected, clear measurement counter
* Synchronised now wait for next edge transition of reference signal M;zsqﬂfgim
wiait_far_high:
INCWY AKX - Mo signal detection counter ------------------- 1 Clock Cycle
CMPW A #OXFFFF hmmm o mm e oo e ---- 1 Clock Cycle
BZ clock_errorl . Owver flow no signal detected return with error & ---- 2/ Clock Cycles™
BF TESTFORT, wait_for_high . if high signal, start counting ------------------- 35 Clock Cycles®
MOV AR #0x0000 ; Signal detected, clear measuremnent counter «---- 1 Clack Gycle
¥
* Measure reference signal high period
measure_high_time:
o L G 1 Clock Cycle
BT TESTPCORT, measure_high_time ; check port status s ----------cmomomomonon 345 Clack Cycles*
.check lower frequency limit *
CMPW A, #swhd INTIME
BNH clock_error2 . check lower limit
.check upper freguency limit * Conditional test Example
CMPW AX, #3wMAXTIME - Maxdrurm limit into AX 3/5 Cycles = & if condition true
BH clock error? =13 if condition false
MOy A, #0x=00 . test status counter in range
BR finished
Figure 9 Timer Array Unit Channel 5 Configuration
RO1AN1062EJ0110 Rev. 1.10 Page 29 of 49

Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Table 15: Source files: Software Clock test

STL File name Header Files
stl_RL78 sw_clocktest.asm stl_clocktest.h
stl.h
Test Harness File Names Header Files
main.c main.h
stl_global_data_example.c stl_gobal_data_example.h
stl_main_example_support function.c
stl_peripheralinit.c

Declaration

char stl_RL78_ sw_clocktest(void)

Description

This function tests the system clock using a software measurement (software counter) process. The measured result
(software count) is compared against the upper and lower limit values defined in the clock test header file
(stl_clocktest.h), and the result status (Pass / Fail / No reference clock) is returned to the calling function.

The reference limits calculation is based on the following
System Clock / (Reference Clock / 2) x times the number of clock cycles executed in the count loop

The function “indicate test result” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate test result” is located in the module stl_main_example support function.c

Input Parameters

SWMAXTIME Upper time limit compare value (Defined in stl_clocktest.h)
SWMINTIME Lower time limit compare value (Defined in stl_clocktest.h)
TESTPORT Test Port Input Pin for external reference signal input (Defined in stl_clocktest.h)

Output Parameters

NONE N/A

Return Values

Test result of CPU register C
0 = Test passed.

char 1 = Test measurement failed (Outside the reference window)
2 = Test measurement failed (No reference clock detected)
RO1AN1062EJ0110 Rev. 1.10 Page 30 of 49

Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

Table 16: Source files: Hardware Clock test

STL File name

Header Files

stl_RL78 hw_clocktest.asm

stl_clocktest.h
stl.h

Test Harness File Names

Header Files

main.c
stl_global_data_example.c
stl_main_example_support function.c

stl_peripheralinit.c

main.h

stl_gobal_data_example.h

Declaration

char stl_RL78 hw_clocktest(void)

Description

This function tests the system clock using the hardware measurement (TAU channel 5) feature. The measured result
(capture value) is compared against the upper and lower limit values defined in the clock test header file
(stl_clocktest.h) and the result status (Pass / Fail / No reference clock) is returned to the calling function.

The function “indicate test result” will be called by the test harness control files (main.c) to process the test result
Note Function “indicate test result” is located in the module stl_main_example support function.c

Input Parameters

hwMAXTIME Upper time limit compare value (Defined in stl_clocktest.h)

hwMINTIME Lower time limit compare value (Defined in stl_clocktest.h)

CAPTURE _interrupt FLAG | Timer channel Capture Interrupt Flag (Defined in stl_clocktest.h)

Output Parameters

NONE N/A

Return Values

Char

Test result of CPU register C
0 = Test passed.
1 = Test measurement failed (Outside the reference window)

2 = Test measurement failed (No reference clock detected)

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139

Page 31 of 49
RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

3. Example Usage

In addition to the actual test software source files, the CS+ test harness workspace is provided which includes
application examples demonstrating how the tests can be run. This code should be examined in conjunction with this
document to see how the various test functions are used.

The testing can be split into two parts:
1. Power-Up Tests.

These are tests can be run following a power on or reset. They should be run as soon as possible to ensure that the
system is working correctly. These tests are

All Ram using Initial March C (or initial March X)
All register tests
Flash Memory CRC Test

The clock test may be run at a later time depending on the initial clock speed if the clock is to establish that the
maximum clock speed is to be measured.

2. Periodic Tests.

These are tests that are run regularly throughout normal program operation. This document does not provide a
judgment of how often a particular test should be ran. How the scheduling of the periodic tests is performed is up
to the user depending upon how their application is structured.

Ram tests. These tests should use the “system” Ram test modules as these are designed to test the
memory in small once the system is initialised. They can be used in small in order to
minimise the size of the buffer area needed to save the application data.

Register Tests. These are dependant upon the application timing

Flash memory test. These modules are designed to be able to accumulate a CRC result over a
number of passes. In this way they can be used to suit the system operation

The clock test modules can be run at any time to suit the application timing

The following sections provide an example of how each test can be used.

3.1. CPU Verification

If a fault is detected by any of the CPU tests then this is very serious. The aim of this test should be to get to a safe
operating point, where software execution is not relied upon, as soon as possible.

3.1.1. Power-Up Tests

All the CPU tests should be run as soon as possible following a reset.

3.1.2. Periodic
If testing the CPU registers periodically the function are designed to be run independently and so can be operated at any
time to suit the application. Each function restores the original register data on completion of test so as not to corrupt
the operation of the application system. It is important that interrupts are disabled during these tests

RO1AN1062EJ0110 Rev. 1.10 Page 32 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended
3.2. Flash ROM Verification

The ROM is tested by calculating a CRC value over a certain range of the Flash memory contents and comparing with a
reference CRC value that must be added to a specific location in the ROM not included in the CRC calculation.

The CS + tool chain can be used to calculate and add a CRC value and place at a location specified by the user. CS +
grants three types of CRC: “general-purpose CRC”, “high-speed CRC (CCR-16-CCITT)”, and “high-speed CRC
(SENT)”. Hardware CRC calculation provide in this library (function “stl RL78 peripheral”) and the C-language
function to generate the reference CRC value (function “reference crc_calculation”) correspond to the CS+’s “general-
purpose CRC”.

The reference value of the software CRC adopted in this library (function “stl RL78 sw_crc_asm) can NOT be
generated by CS +. It has to be made by the users themselves referring to the algorithm shown in the source files.

See Figure 16: CS + object convert option

The reference CRC value of the software CRC (stl. RL78 sw_crc_asm function) implemented in this library can not be
generated with CS +. Please refer to reference _crc CCIT16_Msb_calculation.

See Figure 10: Adding Reference CRC.

@3 RL_78_G14_safety_lib - RL78 Simulator - CS+ for CA,CX - [Project Tree] - X
File Edit View Project Build Debug Tool Window Help (5
Bosat | B EE X DB RS - & B Defauitbuild PR BN IO T e L == K
Project Tree 1 X ¥ Disassemblel %] stl_main_example_support_functions.c | stl_RL78 sw_cressm | starupasm | maine [T Property v x
3033
= 3 8] # [=> ~ | Columns-
£D Build tool generated files | == =
8] | Startup 283 =%,
) startup.asm et 1 O
ind definc 236
stl_RL78_hw_clocktest.asm ;;ﬁ 5 P
stl_RL78_march_c.asm 298
stl_RL78_march_c_initial.asm :@“
stl_RL78_march_x.asm a0z
st_RL78_march_x_initial.asm :@3
stl_RL78_peripheral_crc.asm ans
stl_RL78_registertest.asm o] IR R | MhowwuesivviiiosadtsouesiuuONUOUDUUONONURTUUONUUOOUUUNNNUSTUUONOON
st_RL78_registertest_cs.asm aoe gmes leng lemgen, umsigmes losg)
stl_RL72_registertest_es.asm :iﬁ opens B
st_RL78_registertest_psw.asm a1 onece
stl_RL72_registertest_stack.asm o
st_RL78_registertest_pc.asm a1s
stl_RL7_sw_clocktest.asm ot fhess
stl_RL78_RamTest_Stacks x.asm a7 onece
..... #s stl RL72 RamTest Stacks_c.asm o
B st RL78_sw_crc.asm aao
..... el mainh | [l vesn
| stih 223
..... h=| stl_gobal_data_exampleh ::g
..... & main.c aze
| stl_gobal dats_exemple.c ::; ;
..... L3 stl_main_example_support_functions.c 223 byte € (hyte) ;
& stl_peripheralinit.c :;2 , e o_table[ere_calc 5> 8) = byte] * (cze_cale << 8);
..... h-| stl_clocktesth 23z
n-| globaldefines.h o oot . -
< > U
F¥ Open Help for P ||F& Rename IF3 Find Next IFY Replace Next “FS Go F& Build & Downloz.. | F7 Build Project F8 Ignore Break an “Fﬂ SetiDelete Break |FM Step Over FM Step In 12 Jump to Functi
(m]BREAK (> 0x00be3 | ®ERL7E Simulator {7} Mot measured

Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

3.21. Power-Up Tests

All the ROM memory used must be tested at power up. Both hardware and software CRC modules are capable of
calculating the CRC value over the whole memory range.

3.2.2. Periodic

It is suggested that the periodic testing of Flash memory is done in stages, depending on the time available to the
application. The application will need to save the partially calculated result if using the software module. This value can
then be set as starting point for the next stage of the CRC calculation.

When using the hardware peripheral unit, the partial CRC result value could be left in the result register of the hardware
CRC peripheral unit, but it is advised to save this value and compare it before starting the next part of the calculation.

In this way all of the Flash memory can be verified in time slots convenient to the application.

3.3. RAM Verification
When verifying the RAM it is important to remember the following points:

1. RAM being tested can not be used for anything else including the current stack.
2. Any test requires a RAM buffer where memory contents can be safely copied to and restored from.

3. Copy / test/ restore the stack area by specifying the backup area and the stack area to be used during the test
period. However, interrupt processing can not be performed during this operation.

3.3.1. Power-Up

It is recommended to use the “initial RAM test modules (march C or March X), as these are specifically design for
testing all of the Ram area at power on or Reset. The modules have been designed without any function call and so are
suitable to be executed before the system and ~ C-Stack are initialised as any contents of the Ram memory will be
destroyed. In this library, those initial RAM test modules are implemented in assembler file ‘startup.asm’.

3.3.2. Periodic

Periodic testing of the Ram memory is usually done in small stages, depending on the time available to the application
and the available space necessary to buffer the system Ram contents during testing. Each stage provides a pass / fail
status over the range specified, in this way all of the Ram memory can be verified time slots convenient to the
application.

RO1AN1062EJ0110 Rev. 1.10 Page 34 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

3.4. System Clock Verification

If a fault is detected with the system clock then this is very serious. The aim of this test should be to get to a safe
operating point, where system can be controlled using a different known clock.

3.41. Power-Up

The system clock should be verified at power on or reset. It may be necessary to test the clock once the system has been
initialised and the full system clock frequency has been set and stabilised.

3.4.2. Periodic

Periodic testing of the system clock can be made at any time where the application has the time available. This is
because the reference clock is typically much slower that the system clock in order to increase the accuracy of the clock

measurement.

(i.e. System clock =32 MHZ, Reference clock = 15 KHz)

3.5. Code Coverage

The code coverage can be checked by observing the function list section in simulator mode.

@ RL_72_G14 safety_lib - RL78 Simulator - CS+ for CA,CX - [Function List]

File Edit View Project Build Debug Tool Window

Help

oo |[EE X DB 00| HE A v| 100% = B @ verutauns cA BN @B G = a5 E
Girccaiies # % 14 Disassemblel [3f stl_main_example_support_functions.c | st_RL78_sw_crcasm [startupasm o mein.c [Property E
A =]
z @ ’Z
3 80 8| = ™ | Columns-
£l Build tool generated 4 [| =2 . = | Function Name ¥ File Name ¥ Code Coverage[’s] ¥ A
o] Startup T T igmer e e =« stl_RL78_register_. (No Definition)
f31 startup.asm 15 LR SR v s1RL7B_regster . (o Defrion)
ind defiin s -+ s_RL78 register _ (No Definion)
"'ﬂ" stl_RL78_hw_clocktes Ez = stI_RLiE_reg\ster (No Definition)
& s RUTE march_c.asr || 00 v s1RL78 register. (o Defrion)
880 <t] RL78_ march_cini || 222 - 5::—&{:—;”*?’ - (No Definition)
fmi <t|_RLTS march_xasn| || 202 v sRL78 hw_clo | (No Definition)
= o = sH_RL78_sw_clo (No Definition)
s st| RL7E_march cinit ||| 228 . .
J=pipptaliit| K <« stl_RL78_march_c (N Definitior)
= SH'RL‘?E'Z I:mm;_ s = et iiiiiaan -+ stl_RL78_march_x ' {No Definitior)
1= il 9! 4 208 o2 | IMNCTL |= ox80D; ccess detection satring */ = stl_RL78_RamTe.. (No Definition)
S sLRLTE registertest. ||| 20s [7m0 beteemaen Dammnied . st_RL78_RamTe.. (No Definitior)
S st| RL7E registertest_ || 217 / B v sH_RL78_sw_¢re. (No Definition)
i RUTE registerist. (|22 0 onere | g exe = 0x00007; /* Set CRC start walue */ -« $t_RL7E_periphe_._{No Definitior)
20 st RL7B registertest 212 ooste | - stact_address = CRC_START ADDRESSE;/* CAC stact addzess */ = DI (o Definition)
6w | RU7S registertest || 215 oomss | rath - crc_atez; /= fet CBC et addrens (Leagbh of calealsticn + 1) / - NoP {No Definitior)
e R A ——— o o efrisr
G <t| RL78_ RamTest_Ste 218 ! - - - “Total* stl_main_exampl 39
: | /* caleulave reference periphezal CRC |1 Do ohis enly omee 1! 4/ . : e
B2 StLRL7S RamTest St 000 0 oomas | i£(g_refesenceCale CCIT1E MSB Done == OU) /% Do 3£ sefezence CBE met alresdy ealewlated ol e
#mh t| RL78 sw_creasm || [| 221 i
] mainh 222 otbaz | MyChecksum = refersnce _sza CCIT1E Mab_saloul iz Fozm . address =v LED_Display_Ti.. . stl_main_exampl 100,
i o =+ indicate_test_res.. stl_main_exampl 100,
a5 g omes | SF (g ereASM 1= MyChecksum) <« reversed stl_main_exampl 100
226
227 ooben | g_sesuleBesl = 10; /* Fail CRC walue does mov manch reference walue sslmslas ® reverss 16 s_main_examel il
220 ; <« GenerateCRCTa.. st_main_exampl 100,
25| [omes | le < reference_crc_C.. ' s_main_exampl 100,
& stl main_example.su || 220 ‘ low_level_init stl_peripheralinit 100
& stl_peripheralinit.c ::3 ommdo | g_zesultBool = 0O /* Pass CRC value matches reference value calculated by C lolevel it A Si-reeheraind- S—
B st|_clocktest.h 232 < S
A 228 /* indicate result om BL7Z target boazd LEDs */
b globaldefinesh I3 T Tense o e T g A TS RS T Output 1 x
< > |l AllMes... (*RapidB.. | *Bulld T.. | *Debug.. | *Progra.. | =
F1 Open Help for F. [F2 Rename iF3 Find Next IFY Replace Next ” 5 Go \F& Build & Dewnloa..||F7 Build Project P8 Ignore Break an ” F3 Set/Delete Brezk [P Step Over Fi¥Step In JFi2 Jump to Fun

Displays Function List panel.

(=] BREAK

Figure 11 Function list section

I 0x00ba3 @3 RL7SE Simulator @Nnt measured

RO1AN1062EJ0110 Rev.
Nov. 15, 20139

1.10
RENESAS

Page 35 of 49

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

4. Benchmarking

4.1. Development Environment

e EI(ROE000010KCEO00) On-chip debugging emulator
e (QB-R5F104PJ-TB RL78/G14 Target Board (100pin LQFP , 14 x 14mm)

e Tool chain: CS+ for CA/CX V4.02.00 CA78K0OR V1.72

MCU: R5F104PJAFB

Internal Clock: 32 MHz High Speed Oscillator
System Clock =32 MHz

External Sub Clock: 32 KHz

4.2. CS+ Settings
The following show the specific options and setting set for the test project. The graphics only show those options and
settings that have been changed. All others are the default project settings set by the CS+.

4.21. General Options

@3 RL_73_G14_safety_lib - C5+ for CACX - [Property]
File Edit View Project Buld Debug Tool Window Help]
st FHEH@ X D@0 o B8 8 - & @& DefauliBuild T4 BTN E® G 0 g LSS SR

FTEETED # % | 1] stl_main_exsmple_support functions ¢ | st RL78 sw_crossm [starupasm | maine 5 Property -x

@ z
: 03 @ 9 RSFID4PJ Propeny
[BL 78 614 safety lib (Project o] T
DRSF104P..DVF
bsolute pa C:#Frogram Files (86 Renesas Blectronics#C S +#CACK# Device*RL 734 Devicefic¥DRSF104P.. DVF

#1] Code Generator (Design Tool)
CATEKOR (Build Tool)
RL78 E1(Serial) (Debug Tool)

R5F104P)

RL78/G14 (ROM:256KB;
v2.30

256

24576

i) Program Analyzer (Analyze Tool)
&-[3P File
&-FD Build tool generated files
1| Startup
®0 startup.asm
ing def.inc
..... #s) stl RL78_hw_clocktestasm
#s) st|_RL78_march_c.asm
#s) stl RL78_march_c_initialasm
..... #sh st| RL78_march_x.asm
&) st| RL78_march _x_initial.asm
..... #sh st|_RL78_peripheral_crc.asm
&0 st| RL78_registertest.asm
..... es st|_RL78._registertest_cs.asm
& st| RL78._registertest_es.asm
..... #a) st|_RL78_registertest_psw.asm
#srh st|_RL78_registertest stack.asm
..... #s st|_RL78._registertest_pc.asm
I stl RL78_sw_clocktest.asm
e st| RL78_RamTest_Stacks_x.asm
#s) st| RL78_RamTest_Stacks_c.asm

#s) stl RL78_ sw_crc.asm Eila noma
----- t| mainh \, Microcontroller Information /
+ |\ Microcontroller Information ,

<
[F#2.Jump to Function

> || output B Errer List

F Ignore Break an.. |]FE SetiDelete Bresk |[F#l Step Over FliStepin

FE Build & Downloa..| F7 Build Project

F? Open Help for P...F Rename IF2 Find Next
5% DISCONNECT

Figure 12 CS+ common Options - Target Device

RO1AN1062EJ0110 Rev. 1.10 Page 36 of 49

Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

%3 RL_78_G14_safety_lib - CS+ for CA,CX - [Property]

- X
File Edit View Preject Build Debug Tool Window Help &
@ st | [H G X 5[0 o8 & = | 100 - g B DefaultBuild - gh GG PR
Praject Tree # % | | stl_main_example_support_functions.c [stl_RL78_sw_crc.asm |of startup.asm -x
@8 3
A, CATSKOR Property 3| |#]+
[f RL 78 G14 safety lib (Project)” | Debug Information
% RSF104P) (Microcontroller) ‘Add debug information Yes
2 Pin Configurator (Design Tool) v InputFile
Code Generator (Design Toel) Generate link directive file
4, [CATBIOR (Build Tool) | Using link directive file
5] RLTB F1(Serial) (Debug Tool) v OutputFile))
5 Brogram Analyzer (Anchyze Tool) Output folder “BudModeMams
3 File Output file name *ProjectName*% I
E Force linking against error No
-] Build tool generated files v Library
-8} Startup > Using libraries Using libraries[0]
> System libraries System ibraries{0]
> Additionl library paths Addtional library paths[0]
> System library paths System liorary paths{0]
45 ¢l RL78_march_c.asm » Device
bt} st RL78_march_ 2 :“ﬂ“
A 5t RL78_march x.asm Generate stack solution symbel Yes(s)
..... 8} st| RLT8_march_x_initial.asm res nme
&) stl_RL78_peripheral_crc.asm o Link List
..... #31) stl RL78_registertest.asm > ErrorlList
&) stl_RL78_registertest_cs.asm > Others
.23 stl RL78 registertest_es.asm
&3} stl_RL78_registertest_psw.asm
es) stl RL78 registertest_stack.asm
.23 st]_RL78_registertest_pc.asm
&) stl RL78_sw_clocktest.asm
..... #ah stl_RL78_RamTest_Stacks_x.asm
&0 st RL78_RamTest Stacks c.asm
..... #s) stl_RL78_sw_crc.asm Stark
'J main.h v Common Options Compile Options AssembleOptions j Link Options /. ROMization Process Options Object Convert Options Variables/Functions Relocation Options -
LN
< > ||=E ouput HEErerList
[F2 Open Help for P_ ¥ Rerame |[F2 Find Next [P Reptace Next|[[FS G0 |[F Buite & Dowrloa_| F7 Build Project|[Fl orore Breck an |[”Fﬂ SetiDelete Break | Step Qver [msicpn [[F 3ume to Function
£ {3 DISCONNECT
Figure 13 CS+ Link Options
@3 RL_78 G14_safety lib - CS+ for CA,CX - [Property] - x
File Edit View Preject Build Debug Tool Window Help 5
o D@ X DE0 0SS v 00 = B eubuie -1 4 G LSS S
Project Tree # % | [st_moin_example_support_functions.c. [st_RLT8_sw_crcasm [startupasm |2 mainc - x
] E]

5 @ 8 A, CATEKOR Propety al [#] C]+
| RL 78 G14 safety lib (Project)* |~ Buiid Mode n
% RSF104P) (Microcontroller) »

_* Pin Configurator (Design Taol)
Output file type Execute ModulelLoad Module File)
Intermediate file output folder “BuildModeName*:.
~ Frequently Used Optionstior Compile)
Program Analyzer (Analyze Tao) Perform optimization Yes{Speed precedence)(-ax1)
W Fi 5 Additional include paths Additional include paths[1]
&L File > System include paths System include paths[0]
1) Build tool generated files > Macro definition Macro defintian|0]
-5 Startup v Frequently Used Options(for)
85} startup.asm > Additional include paths Additional include paths [1]
ind def.inc > System include paths System include paths [0]
&1} stl_RL78_hw_clocktest.asm > Macro definition) Macro definition [0]
&5} StLRLT8. march casm ~ Frequently Used Options(for Link)
.5} st|_RL78_march_c_initial.asm Z ;“;r_‘f_ “"’Ia‘f:“ = :Z;‘f ‘“”IEI":““] sl
= itional library paths ional lbrary paths|
%20 stlRL78 march_xasm Output folder < BuildModeName*%.
""" #2175t RL78 march_x_initial.asm Output file name “4ProjectName % f
%] st RL78 peripheral cre.asm ~ Freguently Used Oplions(for ROMization)
..... #a1) stl_RLT8 registertestasm Output ROMized cbiject file Yes
} stlRL78 registertest_cs.asm Output folder for ROMized object file “BuildModeName%.
eg
..... #s stl_RL78_registertest_es.asm ROMized object file name . romp Imf
S5 StLRL8 registertest psw.asm ~ Frequently Used Opiions{for Object Convert)
831} st1 RLT8_registertest_stack.asm g”:“”::’e‘:“'f — TEES e
] " utput folder for hex file “BuildMode Name -
“) 5t RLT8 registertest_pc.asm Hex file name “%ProjectName % hex
2 stl RL78 sw clocktest.asm Hesx file formt Motorola 5 type format{standard address)(4m)
8 st| RL78 RamTest_Stacks_x.asm s Device
#s) st RL78 RamTest_Stacks c.asm > Build Method o
23 st]_RL78_sw_crc.asm Ruild mada
.J mainh v ', Common Options 4 Compilz Options AssembleOptions Link Options ROMization Process Options Object Convert Options Variables/Functions Relocation Options -
Bl ern
< > ||=E outpt B ErorList
[F7 Open Help for P.. [F Rename [[F2 Find et [Pt Repizce i [FE Go |[F& Buitd & Downloa. | F7 euita Project [P lanore Break an. |[[FA SetiDetete Break | step 0ver [Frsiee n [sum o Function

511 DISCONNECT

Figure 14 CS+ Common Options

RO1AN1062EJ0110 Rev. 1.10

Nov. 15, 20139

Page 37 of 49
RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

4.2.2. Complier Settings

3 RL_78_G14_safety_lib - CS+ for CACX - [Property] - X
File Edit View Project Build Debug Tool Window Help
@t | [BHS X D@E|loo| p8 8 v | 100% = g @ DefauliBuild R T R TORCRC R R K]
HEEFE D@3 5
Eviccliies #3111 stl_main_example_support functions ¢ |<f sil_RL78 sw crozsm < statupasm | maine B2 Froperty - x
8
: 038 @ A, CATBKOR Property al [#] =]+
[fi RL 78 G14 safety lib (Project)” |1~ Debug Information .
& RSF104P) (Microcontroller) Add debug information Yes(Add to both assembly and object file}-a2)
_* Pin Configurator (Design Tool) ~ Optimization
ode Generator (Design Teol) Perform optimization Yes(Speed precedence)(-ax1)
A JCATEKOR (Build Toal) | ~ Preprocess
éh RL75 E1(Serial) (Debug Tool) > Additional include paths Additional include paths[1]
9 Program Analyzer (Analyze Too) > Systeminclude paths System include paths[(]
& e > Macro definition Macro defrition(]
> Macro undefinition Macro undsfinition|0]
- EJ Build tool generated files « Startp
=-&]] stertup Use standard startup routine No
.08 startup.asm v Library
ind def.inc Use standard library Yes
: D:ilsﬂ_Rl_Ta_hw_chcktmm Use standard /0 library supported floating-point data Ne
s sti_RL78_march_c.asm > Using standard libraries Using standard libraries 2]
.8 stl_RL78_march_c initialasm ’ "'E“'“:':?:‘
24 st RL78_march_scasm > Memory Model
823 <tl RLT8 march initialasm + [OiiputFilé
= sti_RL78_peripheral_crc.asm Qutput commen object file for various devices No
&5 st|_RLT8 registertestasm > Assembly File
.83 st| RL78_registertest_cs.asm i Eila hd
am) stl RI7B_registertest es.asm Output File
..o st|_RL78._registertest_psw.asm
&l st| RL78 _registertest_stack.asm
..o st| RL78_registertest_pc.asm Common Options), Compile Options AssembleOptions / Link Options ROMization Process Options Object Convart Options Variables/Functions Relacation Options -
-g?sﬂ,mm,m,docktesusm vt o
8 st RL78 RamTest Stacks xasm o] |
#s st|_ RL78 RamTest Stacks c.asm —
50 <t RLT. sw. creasm ||\ ANl Messages {*Rapid build -
< > Output B8 Evrer List
F1 Open Help for P._| Fi2 Rename [[Fat Fin et [P Repiace Next | [lFE o ||Fé uid & Downioa. | Buitd Project|[F@ gnore Break an..[[[F2 Seubetete Break |2 step over [Frrsen n [sump to Function |
552 DISCONNECT
Figure 15 CS+ Compiler Options
3 RL_78_G14_safety_lib - CS+ for CA CX - [Property] - X
File Edit View Project Build Debug Tool Window Help
@Bsot [FHS X DE|0 0| HE 8 v 100% = G @ DefoultBuild MRS
S g B 083 Q 5
FuEs T # X | [stl_main_example_support_functions.c [=f si_RL7B_sw_crcasm | startupasm | mainc - x
: @ 2@
A, CA7BKOR Property a o -+
| fi RL 78 G14 safety lib (Project)” |
.38 RSF104P) (Microcontroller) Output hex file Yes
A Bin Configurator (Design Tool) Output folder for hex file “BuildModeName*.
| Code Generator (Design Tool) Hex file name “ProjectName*% hex
: “iCAﬂ]KOR (Build Tool) 1 Hex file format Motorola S type format (standard address){-km)
L& RL78 El(Serial) (Debug Tool) Split hex file No
T Program Analyzer (Analyze Tool) v HexFile Filling
L fie Fill free memery space Yeslu)
Filling value [FF
@ ﬂ Build teol generated files Filling start address
Filling size[byte]
> Symbol Table
> Emarlist
1 ‘:}lstl RLTa hw_clocktest.asm ~ CRCOperation
8al stl RL78 march c.asm Operate CRC
4 <t RL78_march_c initiaLasm CRC result output address
452t RL7B. march sasm Range of CRC 10CEH-3FCFDH
e High-speed CRC(CRC-16CCITT) ~
88 stl RL78 march initialasm . Othars
e st|_RL78_peripheral_crc.asm
.63 stl RL78 registertest.asm
Bl st|_RL78._registertest_cs.asm
2] st RIT8_registertest_esasm e I R, O
2 ‘ﬂ?“'-ﬂmi-’eﬂi“e"‘eﬁ-wﬁ'" \lﬁ‘gﬁpe:d CRCO\DCeISECmTLépCe\TT?E -ﬁ;ﬁi;ﬁﬁ:ﬁ"&?&ﬁ" is selected, mtﬁ:ﬂ\aa\ value of CRC is 0"
&= stl_RLT8 registertest stack.asm
.83 st| RL78_registertest_pc.asm Common Options / CompileOptions / AssembleOptions /{ Link Options ROMization Process Options), Object Convert Options | Variables/Functions Relocation Options -
-g?sﬂ,mm,m,docktesusm vt m
8 st RL78 RamTest Stacks xasm o |
85 st|_ RL78 RamTest Stacks c.asm —
50 <t RLT. sw. creasm ||\ ANl Messages (" *Rapid build -
< > Output B2 Evrer List
F1 Open Help for P..| Fi2 Rename [[F Find Nt [[PaRopiace Next | iFE G0 ||Fe Buila & Downlcs. | Buitd Project @ gnare Break =n..[[[F2 seubelete Break [[7Step Over [Frrsien n [l sump to Function |

513 DISCONNECT

Figure 16 CS + Object Convert Options

RO1AN1062EJ0110 Rev. 1.10

Nov. 15, 20139

Page 38 of 49
RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

4.3. Benchmark test results

Library functions Number of bytes tested Processing time
CPU Register Tests - Software API - 10.312ps
stl RL78 registertest
CPU Registers Tests — PSW - 1.375us
stl. RL78 registertest psw
CPU Registers Tests - SP - 1.156ps
stl RL78 registertest_stack
CPU Registers Tests - CS - 1.062ps
stl. RL78 registertest_cs
CPU Registers Tests - ES - 1.062us
stl RL78 registertest es
CPU Registers Tests - PC - 2.218us
stl RL78 registertest pc
Software CRC 257072byte 394200ps(394.200ms)
stt RL78 sw_crc_asm
Hardware CRC 257072byte 185000us (185.000ms)
stl RL78 peripheral crc
System March C 128byte 1434us(1.434ms)
stl. RL78 march ¢
System March X 128byte 797.906us
st RL78 march_x
Initial March C 24540byte 274542us (274.542ms)
stt RL78 march _c_initia
Initial March X 24540byte 152609us(152.609ms)
stt. RL78 march_x_initial
Hardware Clock test - 56.40us
stt. RL78 hw_clocktest
Software Clock test - 5700ps (5.700ms)
stl. RL78 sw_clocktest
Stack area test (March C) 512byte+512byte 11782us (11.782ms)
stl. RL78 RamTest Stacks c
Stack area test (March X) 512byte+512byte 6694115(6.694ms)
stt. RL78 RamTest Stacks x
RO1AN1062EJ0110 Rev. 1.10 Page 39 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

5. Additional Hardware Resources

The following additional safety and self test features have been included in the RL78 series to provide support for the
user. While these additional functions have not been certified by VDE, they provide a valuable extra resource to the
user and are included here for reference.

5.1. Additional Safety Functions
The following additional safety functions have been included in the RL78 series MCU devices.

5.1.1. RAM Memory Parity Generator Checker

When enabled the function includes a parity check for each byte written to any location of the RAM memory area. The
Parity is generated when data is written to the Ram memory and checked when a location is read from memory.

Please note that this function is available only for data accesses and does not apply to code executed from Ram.

If a Ram parity error is detected, then an internal Reset is generated. The Reset source can be determined by examining
the “RESF” register. The “IAWREF” bit will be set if the invalid memory access was the source of the Reset.

Format of RAM Parity Error Control Register (RPECTL)

Address: FOOF5H After reset: 00H R/W

Symbol <7> 6 5 4 3 2 1 <0=
RPECTL RPERDIS 0 0 0 0 0 0 RPEF
RPERDIS Parity error reset mask flag
0 Enable parity error resets.

1 Disable parity error resets.

RPEF Parity error status flag

0 No parity error has occurred.

1 A parity error has occurred.

Figure 17 RAM Parity Error Checking

RO1AN1062EJ0110 Rev. 1.10 Page 40 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

5.1.2. RAM Guard Protection
This is a write protection feature that when enabled allows data to be read from the selected Ram area, but prohibits a
write to these locations. No error is generated if a write occurs to this area

The Ram area available for this feature is limited and can be selected by the “GRAMO, GRAMI1” bits as shown in
figure 22 below:

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: FOO78H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 4]
IAWCTL IAWEN 0 GRAM1 GRAMO 0 GPORT ‘ GINT | GCSC
IAWEN"™"" Control of invalid memory access detection
0 Disable the detection of invalid memory access.
1 Enable the detection of invalid memory access.
GRAM1 GRAMO RAM guard space™™*

V] V] Disabled. RAM can be written to.

0 1 The 128 bytes starting at the lower RAM address

1 0 The 256 bytes starting at the lower RAM address

1 1 The 512 bytes starting at the lower RAM address

Figure 18 RAM Guard Protection

5.1.3. Invalid Memory Access Protection
This is a feature that provides additional protection for detection of an invalid memory access.

Please note that once the “TAWEN” bit is set in the “IAWCTL” register, it cannot be disabled except for a Reset. Also if
the Watchdog is enabled in the Flash memory Option Bytes registers, then the invalid memory protection automatically
enabled.

If an invalid memory access is detected, then an internal Reset is generated. The Reset source can be determined by
examining the “RESF” register. The “ITAWRF” bit will be set if the invalid memory access was the source of the Reset.

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: FOO78H After reset: 00H R/W

Symbal 7 6 5 4 3 2 1 0
IAWCTL IAWEN 0 GRAM1 GRAMO 0 GPORT ‘ GINT ‘ GCSC
IAWEN"™"" Control of invalid memory access detection
0 Disable the detection of invalid memory access.
1 Enable the detection of invalid memory access.

Figure 19 Invalid Memory Access Protection

RO1AN1062EJ0110 Rev. 1.10 Page 41 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

5.1.4. 1/0 Port SFR Protection

This is a write protection feature that prohibits a write to the SFR registers. No error is generated if a write occurs, but

the write operation does not change the state of the registers involved.

Please note that the data port register (Pxx) cannot be protected.

The protection can be turned off, if a change is required for the SFR registers or for safety reasons the SFR settings are

refreshed by the application.
The following I/O port SFR registers can be protected with this function

PMxx, PUxx, PIMxx, POMxx, PMCxx, ADPC, and PIOR
Pxx cannot be guarded.

The Port /0 SFR registers can be guarded by the “GPORT” bit as shown in figure 20 below

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: FOO78H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0
IAWCTL IAWEN 0 GRAM1 GRAMO 0 GPORT | GINT | GCSsC
JAWEN™"" Control of invalid memory access detection
0 Disable the detection of invalid memory access.
1 Enable the detection of invalid memory access.
GRAM1 GRAMO RAM guard space™™*
0 0 Disabled. RAM can be written to.

The 128 bytes starting at the lower RAM address

The 256 bytes starting at the lower RAM address

- = o
- o | =

The 512 bytes starting at the lower RAM address

GPORT Port register guard™™*
0 Disabled. Port registers can be read or written to.
1 Enabled. Writing to port registers is disabled. Reading is enabled.

Figure 20 I/0 Port SFR Guard Protection

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139 RENESAS

Page 42 of 49

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

5.1.5. Interrupt SFR Protection

This is a write protection feature that prohibits a write to the Interrupt SFR registers. No error is generated if a write
occurs to this area, but the write operation does not change the state of the registers involved. The protection can be
turned off, if a change is required for the SFR registers or for safety reasons the SFR settings are refreshed by the

application.

The following interrupt registers can be protected with this function

IFxx, MKxx, PRxx, EGPx, and EGNx

The interrupt SFR registers can be guarded by the “GINT” bit as shown in figure 21 below

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: FOO78H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1
IAWCTL IAWEN 4] GRAM1 GRAMO 0 GPORT ‘ GINT ‘ GCSC
IAWEN"™"" Control of invalid memory access detection
1] Disable the detection of invalid memory access.
1 Enable the detection of invalid memory access.
GRAMI1 GRAMO RAM guard space”™™’
0 0 Disabled. RAM can be written to.
0] 1 The 128 bytes starting at the lower RAM address
1 0 The 256 bytes starting at the lower RAM address
1 1 The 512 bytes starting at the lower RAM address
GPORT Port register guard™™*
0] Disabled. Port registers can be read or written to.
1 Enabled. Writing to port registers is disabled. Reading is enabled.
GINT Interrupt register guard™™=*
0 Disabled. Interrupt registers can be read or written to.
1 Enabled. Writing to interrupt registers is disabled. Reading is enabled.

Figure 21 Interrupt SFR Guard Protection

RO1AN1062EJ0110 Rev. 1.10
Nov. 15, 20139 RENESAS

Page 43 of 49

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

5.1.6. Control Register Protection
This is a write protection feature that prohibits a write to the control registers. No error is generated if a write occurs to
this area, but the write operation does not change the state of the registers involved. The protection can be turned off, if
a change is required for the SFR registers or for safety reasons the SFR settings are refreshed by the application.

The following control registers can be protected with this function

CMC, CSC, OSTS, CKC, PERx, OSMC, LVIM, LVIS, and RPECTL

The interrupt SFR registers can be guarded by the “GCSC” bit as shown in figure 22 below

Format of Invalid Memory Access Detection Control Register (IAWCTL)

Address: FOO78H After reset: 00H R/W

Symbol 7 6 5 4 3 2 1 0
IAWCTL IAWEN 0 GRAM1 GRAMO 0 GPORT | GINT | GCSC
IAWEN"™"" Control of invalid memory access detection
0 Disable the detection of invalid memory access.
1 Enable the detection of invalid memory access.
GRAM1 GRAMO RAM guard space™™’
0 0 Disabled. RAM can be written fo.
0 1 The 128 bytes starting at the lower RAM address
1 0 The 256 bytes starting at the lower RAM address
1 1 The 512 bytes starting at the lower RAM address
GPORT Port register guard™®*
0 Disabled. Port registers can be read or written to.
1 Enabled. Writing to port registers is disabled. Reading is enabled.
GINT Interrupt register guard™**
0 Disabled. Interrupt registers can be read or written to.
1 Enabled. Writing to interrupt registers is disabled. Reading is enabled.
GCSC Chip state control register guard™****®
0 Disabled. Chip state control registers can be read or written to.
1 Enabled. Writing to chip state control registers is disabled. Reading is enabled.

Figure 22 Invalid Memory Access Protection

RO1AN1062EJ0110 Rev. 1.10 Page 44 of 49
Nov. 15, 20139 RENESAS

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

5.2. Additional Self Test Functions
The ADC includes additional inputs designed to help test the operation of the ADC. These include

eTemperature Sensor

o Internal Voltage Reference (1.44V)

External Analogue Voltage Reference pins (AVrefP and AVrefM)

These internal analogue input pins can be used to verify the operation of the ADC against a known reference point. The
external pins can be set to (typically AVrefP < Vdd, AVrefM = Vss) additional measurement point to establish the
correct operation of the ADC.

Note the normal ADC input selection register (ADS) can be used for all inputs except the external reference inputs
which are set according to the table below.

Address: FOO13H After reset: 00H R/W

Symbol
ADTES

7 6 5 4 3 2 1 0
0 4] 0 0 0 ADTES2 ADTES1 ADTESO
ADTES2 ADTES1 ADTESO A/D conversion target

0

0

0

ANIxx (This is specified using the analog input channel specification
register (ADS).)

0

1

0

AVrsru

0

1

1

AVrerp

Other than the above

Setting prohibited

Figure 23 ADC Self Test

RO1AN1062EJ0110 Rev. 1.10

Nov. 15, 20139

RENESAS

Page 45 of 49

IEC60730/60335 Self Test Library of CARL78 for RL78 MCU Extended

6. Related Application Note

The application note related to this application note is listed below for reference.

e RL78 Family VDE Certified IEC60730/60335 Self Test Library APPLICATION NOTE(RO1AN0749E)

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

RO1AN1062EJ0110 Rev. 1.10 Page 46 of 49
Nov. 15, 20139 RENESAS

http://www.renesas.com/
http://www.renesas.com/inquiry

Revision Record

Description

Rev. Date Page Summary

1.00 Mar. 11, 2019 — First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by

this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to
stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a
humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded.
The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed
circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings
and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not
guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip
power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power
supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for
input signal during power-off state as described in your product documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-
impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-
through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait
until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the
reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an
external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi (Max.) and Vin
(Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in
the transition period when the input level passes through the area between Vi (Max.) and Vi (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the
correct operation of the LSI is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The
characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal
memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity

to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

1.

10.

11.
12.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and
application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product
or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these
circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other
intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document,
including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all
liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each
Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic

appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human
life or bodily injury (artificial life support devices or systems: surgical implantations: etc.), or may cause serious property damage (space system: undersea
repeaters; nuclear power control systems: aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any
Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas
Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics
disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or
damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for
hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any
other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the
safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable
laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics

products.

(Notel) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Self Test Libraries Introduction
	2. Self Test Library Functions
	2.1. CPU Register Tests
	2.1.1. CPU Register Tests - Software API

	2.2. Invariable Memory Test – Flash ROM
	2.2.1. CRC16-CCITT Algorithm
	2.2.2. Software CRC - Software API
	2.2.3. Hardware CRC - Software API

	2.3. Variable memory - SRAM
	2.3.1. Algorithms
	2.3.2. Variable Memory Test - Software API
	2.3.2.1. System March C
	2.3.2.2. System March X
	2.3.2.3. Initial March C
	2.3.2.4. Initial March X
	2.3.2.5. Stack area test (March C)
	2.3.2.6. Stack area test (March X)

	2.4. System Clock Test
	2.4.1. Hardware Measurement
	2.4.2. Software Measurement

	3. Example Usage
	3.1. CPU Verification
	3.1.1. Power- Up Tests
	3.1.2. Periodic

	3.2. Flash ROM Verification
	3.2.1. Power- Up Tests
	3.2.2. Periodic

	3.3. RAM Verification
	3.3.1. Power-Up
	3.3.2. Periodic

	3.4. System Clock Verification
	3.4.1. Power-Up
	3.4.2. Periodic

	3.5. Code Coverage

	4. Benchmarking
	4.1. Development Environment
	4.2. CS+ Settings
	4.2.1. General Options
	4.2.2. Complier Settings

	4.3. Benchmark test results

	5. Additional Hardware Resources
	5.1. Additional Safety Functions
	5.1.1. RAM Memory Parity Generator Checker
	5.1.2. RAM Guard Protection
	5.1.3. Invalid Memory Access Protection
	5.1.4. I/O Port SFR Protection
	5.1.5. Interrupt SFR Protection
	5.1.6. Control Register Protection

	5.2. Additional Self Test Functions

	6. Related Application Note
	Revision Record
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Corporate Headquarters
	Contact information
	Trademarks

