RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RL*-A0132A/E	Rev.	1.00
Title	Correction for Incorrect Description Notice RL78/G23 Descriptions in the User's Manual: Hardware Rev. 1.21 Changed		Information Category	Technical Notification		
Applicable Product	RL78/G23 Group	Lot No.	Reference Document	RL78/G23 User's Manual: Hardware Rev. 1.21 R01UH0896EJ0121 (Nov. 2022)		
		All lots				

This document describes misstatements found in the RL78/G23 User's Manual: Hardware Rev. 1.21 (R01UH0896EJ0121).

Corrections

Applicable Item	Applicable Page	Contents
12.3.3 A/D converter mode register 0 (ADMO)	Page 547, Page 550 to Page 562	Incorrect descriptions revised
12.3.4 A/D converter mode register 1 (ADM1)	Page 564	Incorrect descriptions revised
12.3.5 A/D converter mode register 2 (ADM2)	Page 565, Page 566	Incorrect descriptions revised
20.2 Configuration of ELCL	Page 1035, Page 1037, Page 1039	Incorrect descriptions revised
20.3.1 Innut signal select registers n (ELSELn) (n = 0 to 11)	Page 1042, Page 1046	Incorrect descriptions revised
20.6 Points for Caution when the ELCL is to be Used	Page 1081	Incorrect descriptions revised
29.3.3 Sequencer instruction registers p (SMSIp) (p 0 to 31)	Page 1213, Page 1214	Incorrect descriptions revised
29.4 Operations of the SNOOZE Mode Sequencer	Page 1223	Incorrect descriptions revised
29.4.1 Internal operations of the SNOOZE mode sequencer	Page 1220	Incorrect descriptions revised
29.4.4 Procedures for running the SNOOZE mode sequencer	Page 1224	Incorrect descriptions revised
29.4.5 States of the SNOOZE mode sequencer	Page 1226	Incorrect descriptions revised
29.5.20 Interrupt plus termination	Page 1248	Incorrect descriptions revised
29.6 Operation in Standby Modes	Page 1250	Incorrect descriptions revised
37.4 AC Characteristics	Page 1431	Incorrect descriptions revised

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

No.	Corrections and Applicable Items			Pages in this document for corrections
	Document No.	English	R01UH0896EJ0121	
1	8.3.4 Realtime clock control register 1 (RTCC1)		Page 473	Page 3
2	Figure 8-19 Procedure for Reading Realtime Clock		Page 485	Page 4
3	Figure 8-20 Procedure for Writing Realtime Clock		Page 486	Page 4
4	37.3.2 Supply current characteristics		Page 1410 to Page 1427	Page 5 to Page 18
5	37.6.4 Comparator characteristics		Page 1475	Page 19
6	12.3.3 A/D converter mode register 0 (ADM0)		$\begin{aligned} & \text { Page 547, Page } 550 \text { to } \\ & \text { Page } 562 \end{aligned}$	Page 20 to Page 29
7	12.3.4 A/D converter mode register 1 (ADM1)		Page 564	Page 30
8	12.3.5 A/D converter mode register 2 (ADM2)		Page 565, Page 566	Page 31, Page 32
9	20.2 Configuration of ELCL		$\begin{aligned} & \text { Page 1035, Page 1037, } \\ & \text { Page 1039 } \\ & \hline \end{aligned}$	Page 33 to Page 35
10	20.3.1 Input signal select registers n (ELISELn) ($\mathrm{n}=0$ to 11)		Page 1042, Page 1046	Page 36, Page 37
11	20.6 Points for Caution when the ELCL is to be Used		Page 1081	Page 38
12	29.3.3 Sequencer instruction registers p (SMSIp) ($p=$ 0 to 31)		Page 1213, Page 1214	Page 39 to Page 40
13	29.4 Operations of the SNOOZE Mode Sequencer		Page 1223	Page 41
14	29.4.1 Internal operations of the SNOOZE mode sequencer		Page 1220	Page 42
15	29.4.4 Procedures for running the SNOOZE mode sequencer		Page 1224	Page 43
16	29.4.5 States of the SNOOZE mode sequencer		Page 1226	Page 44
17	29.5.20 Interrupt plus termination		Page 1248	Page 45
18	29.6 Operation in Standby Modes		Page 1250	Page 46
19	37.4 AC Characteristics		Page 1431	Page 47

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/G23 Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A0103A/E	Jan. 19, 2023	First edition issued Corrections No. 1 to No.5 revised
TN-RL*-A0132A/E	Jan. 9, 2024	Corrections No.6 to No.19 revised (this document)

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

1. 8.3.4 Realtime clock control register 1 (RTCC1) (Page 473)

Incorrect:
Figure 8 - 5 Format of Realtime Clock Control Register 1 (RTCC1) (2/2)

RWAIT	Wait control of real-time clock
0	Counting proceeds.
1	Stops the SEC to YEAR counters. Counter values are readable and writable.
This bit controls the operation of the counter. Be sure to write 1 to this bit to read or write the counter value. So that the 16-bit internal counter continues to run, return the value of this bit to 0 on completion of reading or writing within one second. After setting this bit to 1, it takes up to one cycle of fRTCCK until the counter value can be actually read or written (RWST = 1).Notes 1,2	
When the internal counter (16 bits) overflows while the setting of this bit is 1 , an indicator of the counter having overflowed is retained after RWAIT has become 0 , after which counting up continues. Note that, when the second count register has been written to, the overflow is not retained	

Correct:

Figure 8 - 5 Format of Realtime Clock Control Register 1 (RTCC1) (2/2)

RWAIT	Wait control of real-time clock
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value

This bit controls the operation of the counter

Be sure to write 1 to this bit to read or write the counter value
So that the 16 -bit internal counter continues to run, return the value of this bit to 0 on completion of reading or writing within one second. When reading or writing to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.
After setting this bit to 1 , it takes up to one cycle of fRTCCK until the counter value can be actually read or written (RWST = 1). Notes 1 , 2
When the internal counter (16 bits) overflows while the setting of this bit is 1 , an indicator of the counter having overflowed is retained after RWAIT has become 0 , after which counting up continues. Note that, when the second count register has been written to, the overflow is not retained

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

2. Figure 8-19 Procedure for Reading Realtime Clock (Page 485)

Incorrect:

Note Be sure to confirm that RWST $=0$ before setting STOP mode.
Caution Complete the series of process of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.
Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), day-of-week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be read in any sequence. All the registers do not have to read and only some registers may be read.

3. Figure 8-20 Procedure for Writing Realtime Clock (Page 486)

Incorrect:

Note Be sure to confirm that RWST $=0$ before setting STOP mode.
Cautions 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.
Cautions 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counting is in progress (RTCE $=1$), rewrite the values of the MIN register after disabling interrupt processing of INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), day-of-week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be written in any sequence. All the registers do not have to be set and only some registers may be written.

Correct:

Note Be sure to confirm that RWST $=0$ before setting STOP mode.
Caution Complete the series of process of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second. When reading to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CTO bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.
Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), day-of-week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be read in any sequence. All the registers do not have to read and only some registers may be read.

Correct:

Note Be sure to confirm that RWST $=0$ before setting STOP mode.
Cautions 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second. When writing to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CTO bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.
Cautions 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counting is in progress (RTCE $=1$), rewrite the values of the MIN register after disabling interrupt processing of INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), day-of-week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be written in any sequence. All the registers do not have to be set and only some registers may be written.

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

4. 37.3.2 Supply current characteristics (Page 1410 to Page 1427)

Incorrect:

37.3.2 Supply current characteristics

1. 30- to 64-pin package products with 96 - to 128-Kbyte flash ROM
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=E \mathrm{~V}_{\mathrm{ss} 0}=0 \mathrm{~V}$)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode	$\mathrm{fIH}=32 \mathrm{MHz}{ }^{\text {Note }} 2$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		1.3	-	mA
						$\mathrm{VDD}=1.8 \mathrm{~V}$		1.3	-	
					Norma	$\mathrm{VDD}=5.0 \mathrm{~V}$		3.0	5.0	mA
						$\mathrm{VDD}=1.8 \mathrm{~V}$		3.0	5.0	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A / D converter LVD circuit, /l/O port and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fil: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA) is $25^{\circ} \mathrm{C}$ unless otherwise specified.

Correct:

37.3.2 Supply current characteristics

1. 30- to 64 -pin package products with 96 - to $\mathbf{1 2 8 - K b y t e ~ f l a s h ~ R O M ~}$

$$
\begin{equation*}
\left(\mathrm{T}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V} \text {, } \mathrm{V}_{\mathrm{ss}}=\mathrm{EV} \mathrm{Ssso}=0 \mathrm{~V}\right) \tag{1/4}
\end{equation*}
$$

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
$\begin{aligned} & \text { Supply } \\ & \text { Current } \\ & \text { Note } 1 \end{aligned}$	IDD1	Operating mode	$\begin{aligned} & \begin{array}{l} \text { HS } \\ \text { (high-speed main) } \\ \text { mode } \end{array} \end{aligned}$	$\mathrm{fiH}=32 \mathrm{MHz}{ }^{\text {Note }} 2$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		1.3	-	mA
						$\mathrm{VDD}=1.8 \mathrm{~V}$		1.3	-	
						$\mathrm{VDD}=5.0 \mathrm{~V}$		3.0	5.0	mA
						$\mathrm{VDD}=1.8 \mathrm{~V}$		3.0	5.0	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.

- The currents in the "Typ." column do not include the operating currents of the peripheral modules.
- The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.

Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.

Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fiH: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA) is $25^{\circ} \mathrm{C}$ unless otherwise specified

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

1. 30- to 64-pin package products with 96 - to 128-Kbyte flash ROM
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{SS}}=\mathrm{EV}_{\mathrm{SS}} 0=0 \mathrm{~V}$)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
Supply current Note 1	IDD1	Operating mode	Subsystem clock operation mode	fSUB $=32.768 \mathrm{kHz}{ }^{\text {Note }}{ }^{2}$, Low-speed on-chip oscillator operation	Normal operation	TA $=-40^{\circ} \mathrm{C}$		3.2	5.5	$\mu \mathrm{A}$
						$\mathrm{TA}=+25^{\circ} \mathrm{C}$		3.5	5.8	

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A/D converter LVD circuit, llO port and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC 32bit interval timer, and watchdog timer.
Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO = 1, 1). They do not include the currents flowing into the RTC. 32-bit. interval timer, and watchdog timer.

Remark 1. fl: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Date: Jan. 9, 2024

1. 30- to 64 -pin package products with 96 - to $\mathbf{1 2 8}$-Kbyte flash ROM
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{ddo}} \leq \mathrm{V} \mathrm{dD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=0 \mathrm{~V}$)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
Supply current	IDD1	Operating mode	Subsystem clock operation mode	fSUB $=32.768 \mathrm{kHz}^{\text {Note } 2}$, Low-speed on-chip oscillator operation	Normal operation	TA $=-40^{\circ} \mathrm{C}$		3.2	5.5	$\mu \mathrm{A}$
						$\mathrm{TA}=+25^{\circ} \mathrm{C}$		3.5	5.8	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. In the subsystem clock operation mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules
Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped
Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO $=1,1$).

Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

1. 30- to 64-pin package products with 96 - to 128-Kbyte flash ROM

Item	Symbol	Conditions				Min.	Typ.	Max.	Unit					
Supply currentNote 1	$\begin{aligned} & \hline \begin{array}{l} \text { IDD2 } \\ \text { Note 2 } \end{array} \\ & \hline \end{aligned}$	HALT mode	HS (high-speed main) mode	$\mathrm{fiH}=32 \mathrm{MHZ} \mathrm{Z}^{\text {Note }} 3$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.54	1.93	mA					
					$\mathrm{VDD}=1.8 \mathrm{~V}$		0.53	1.92						
				$\mathrm{fmX}=8 \mathrm{MHz}$ Note 5 , Square wave input	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.12	0.47	mA					
					$\mathrm{VDD}=1.8 \mathrm{~V}$		0.10	0.44						
				$\mathrm{fmX}=8 \mathrm{MHz}$ Note 5 , Resonator connection	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.21	0.58	mA					
					$\mathrm{VDD}=1.8 \mathrm{~V}$		0.20	0.57						

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A/D converter LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution. Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped

Remark 1. fiH: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA) is $25^{\circ} \mathrm{C}$ unless otherwise specified.

Date: Jan. 9, 2024

1. 30- to 64-pin package products with 96- to 128-Kbyte flash ROM
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{ddo}} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Item	Symbol	Conditions				Min.	Typ.	Max.	Unit
Supply currentNote 1	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline \begin{array}{l} \text { DOD } \\ \text { Note } \end{array} \end{array}$	HALT mode	HS (high-speed main) mode	$\mathrm{fiH}=32 \mathrm{MHzNote} 3$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.54	1.93	mA
					$\mathrm{VDD}=1.8 \mathrm{~V}$		0.53	1.92	

Note 1. The listed currents are the total currents flowing into VDD and EVDDo, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.

- The currents in the "Typ." column do not include the operating currents of the peripheral modules.
- The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution. Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on chip oscillator, and subsystem clock are stopped.
Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fiH: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA) is $25^{\circ} \mathrm{C}$ unless otherwise specified.

1. 30- to 64-pin package products with 96 - to 128 -Kbyte flash ROM
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDD}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}^{2}=E \mathrm{Vss} 0=0 \mathrm{~V}$)

Item	Symbol	Conditions				Min.	Typ.	Max.	Unit
Supply current Note 1	$\begin{aligned} & \hline \begin{array}{l} 1 \mathrm{DD} 2 \\ \text { Note 2 } \end{array} \\ & \hline \end{aligned}$	HALT mode	Subsystem clock operation mode	fsub $=32.768 \mathrm{kHz}{ }^{\text {Note }} 3$, Low-speed on-chip oscillator operation	TA $=-40^{\circ} \mathrm{C}$		0.53	2.31	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.65	2.38	
					$\mathrm{TA}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$		0.80	4.95	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A / D converter LVD circuit, $/ / /$ port , and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the currents flowing into the RTC 32-bit interval timer, and watchdog timer.
Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They do not include the currents flowing into the RTC 32-bit interval timer, and watchdog timer,
Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 $=1,1$). They do not include the currents flowing inte the RTC, 32-bit interval timer, and watchdog timer,
Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the current flowing inte the RTC 32 -bit interval timer, and watchdeg timer, For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They de not include the currents flowing into the RTC 32-bit interval timer and watchdog timer.
Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 $=1,1$). They do not include the currents flowing into the RTC 32-bit interval timer and watchdog timer.
Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fsuB: Subsystem clock frequency (XT1 clock oscillation
frequency)

Date: Jan. 9, 2024

1. 30-to 64 -pin package products with 96 - to 128-Kbyte flash ROM
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=E \mathrm{Vsso}^{2}=0 \mathrm{~V}$)
(4/4)

Item	Symbol	Conditions				Min.	Typ.	Max.	Unit
Supply current Note 1	$\begin{array}{\|l\|l\|} \hline \text { IDD2 } \\ \text { Note 2 } \end{array}$	HALT mode	Subsystem clock operation mode	fSUB $=32.768 \mathrm{kHz}^{\text {Note }} 3$, Low-speed on-chip oscillator operation	TA $=-40^{\circ} \mathrm{C}$		0.53	2.31	$\mu \mathrm{A}$
					$\mathrm{TA}^{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.65	2.38	
					$\mathrm{TA}=+50^{\circ} \mathrm{C}$		0.80	4.95	

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. In the subsystem clock operation mode or the STOP mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.
Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped.
Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO $=1,1$).
Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped.
Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 $=1,1$). The current flowing into the RTC is included.
Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

2. 30- to 64 -pin package products with 192- to 256 -Kbyte flash ROM and 80 -pin package product with 128- to 256-Kbyte flash ROM
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{EV}_{\mathrm{Ss} 0}=0 \mathrm{~V}$)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode	$\mathrm{fiH}=32 \mathrm{MHz}^{\text {Note }} 2$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		1.4	-	mA
						$\mathrm{VDD}=1.8 \mathrm{~V}$		1.4	-	
					Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		3.0	5.0	mA
						$\mathrm{V} D \mathrm{D}=1.8 \mathrm{~V}$		3.0	5.0	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A/D converter LVD circuit, //O port and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten,

Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.

Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped
Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped

Remark 1. fiH: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (T_{A}) is $25^{\circ} \mathrm{C}$ unless otherwise specified.

Date: Jan. 9, 2024
2. 30 - to 64 -pin package products with 192 - to 256 -Kbyte flash ROM and 80 -pin package product with 128- to 256-Kbyte flash ROM
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}^{2}=\mathrm{EV}$ sso $=0 \mathrm{~V}$)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
$\begin{aligned} & \text { Supply } \\ & \text { current } \end{aligned}$$\text { Note } 1$	IDD1	Operating mode	$\begin{aligned} & \text { HS } \\ & \text { (high-speed main) } \\ & \text { mode } \end{aligned}$	$\mathrm{fIH}=32 \mathrm{MHz}{ }^{\text {Note }} 2$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		1.4	-	mA
						$\mathrm{VDD}=1.8 \mathrm{~V}$		1.4	-	
					Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		3.0	5.0	mA
						$\mathrm{VDD}=1.8 \mathrm{~V}$		3.0	5.0	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.

- The currents in the "Typ." column do not include the operating currents of the peripheral modules.
- The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed on chip oscillator, and subsystem clock are stopped.
Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fir: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA) is $25^{\circ} \mathrm{C}$ unless otherwise specified

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

2. 30- to 64 -pin package products with 192- to 256 -Kbyte flash ROM and 80 -pin package product with 128- to 256-Kbyte flash ROM
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{EV}_{\mathrm{Ss} 0}=0 \mathrm{~V}$)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
Supply current Note 1	IDD1	Operating mode	Subsystem clock operation mode	fsub $=32.768 \mathrm{kHz}^{\text {Note }} 2$, Low-speed on-chip oscillator operation	Normal operation	TA $=-40^{\circ} \mathrm{C}$		3.3	6.1	$\mu \mathrm{A}$
						TA $=+25^{\circ} \mathrm{C}$		3.6	6.3	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A/D converter LVD circuit, $/$ I/O port , and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC 32 bit interval timer, and watchdog timer,

Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO = 1, 1). They do not include the currents flowing into the RTC 32-bit interval timer ${ }_{2}$ and watchdog timer.

Date: Jan. 9, 2024
2. 30 - to 64 -pin package products with 192- to 256 -Kbyte flash ROM and 80 -pin package product with 128- to 256-Kbyte flash ROM
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{EV}_{\mathrm{SS} 0}=0 \mathrm{~V}$)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
Supply current Note 1	IDD1	Operating mode	Subsystem clock operation mode	fSUB $=32.768 \mathrm{kHz}^{\text {Note } 2}$, Low-speed on-chip owillator operation	Normal operation	$\mathrm{TA}=-40^{\circ} \mathrm{C}$		3.3	6.1	$\mu \mathrm{A}$
						$\mathrm{TA}^{\prime}=+25^{\circ} \mathrm{C}$		3.6	6.3	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. In the subsystem clock operation mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules
Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed The listed currents apply when the high-speed on-
system clock, and subsystem clock are stopped.
Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO = 1, 1).

Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

2. 30- to 64 -pin package products with 192- to 256 -Kbyte flash ROM and 80 -pin package product with 128- to 256-Kbyte flash ROM

									(3/4)
Item	Symbol	Conditions				Min.	Typ.	Max.	Unit
Supply	IDD2	HALT mode		$\mathrm{fiH}=32 \mathrm{MHz} \mathrm{Z}^{\text {Note }} 3$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.57	1.97	mA
currentNote 1	Note 2		(high-speed main) mode		$\mathrm{VDD}=1.8 \mathrm{~V}$		0.56	1.96	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation curcent but do not include those flowing into the A/D converter LVD circuit, /IO port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped
Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped

Remark 1. fil: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA) is $25^{\circ} \mathrm{C}$ unless otherwise specified.

Date: Jan. 9, 2024
2. 30 - to 64 -pin package products with 192 - to 256 -Kbyte flash ROM and 80 -pin package product with 128- to 256-Kbyte flash ROM

									$\begin{aligned} & (3 / 4) \\ & \hline \text { Unit } \end{aligned}$
Item	Symbol	Conditions				Min.	Typ.	Max.	
Supply	IDD2	HALT mode		$\mathrm{fiH}=32 \mathrm{MHzNote} 3$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.57	1.97	mA
			mode		$\mathrm{VDD}=1.8 \mathrm{~V}$		0.56	1.96	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes.

- The currents in the "Typ." column do not include the operating currents of the peripheral modules.
- The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.

Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fiH: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA) is $25^{\circ} \mathrm{C}$ unless otherwise specified

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

2. 30- to 64 -pin package products with 192- to 256 -Kbyte flash ROM and 80 -pin package product with 128- to 256-Kbyte flash ROM
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{EV}_{\mathrm{Ss} 0}=0 \mathrm{~V}$)

Item	Symbol	Conditions				Min.	Typ.	Max.	Unit
$\begin{aligned} & \hline \begin{array}{l} \text { Supply } \\ \text { current } \end{array} \end{aligned}$$\text { Note } 1$	$\begin{array}{\|l} \hline \text { IDD2 } \\ \text { Note } 2 \end{array}$	HALT mode	Subsystem clock operation mode	fSUB $=32.768 \mathrm{kHz}$ Note 3 , Low-speed on-chip oscillator operation	$T_{A}=-40^{\circ} \mathrm{C}$		0.62	2.94	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.74	3.00	
					TA $=+50^{\circ} \mathrm{C}$		0.88	6.00	

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline & & & & & \\
\hline
\end{array}
$$

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A/D converter LVD circuit, /l/O port and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten,

Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution. Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the currents flowing into the RTC 32-bit interval timer, and watchdog timer,

Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They do not include the currents flowing inte the RTC 32-bit interval timer, and watchdog timer.
Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO $=1,1$). They do not include the currents flowing into the RTC 32-bit interval timer, and watchdog timer.
Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the current flowing inte the RTC 32-bit interval timer, and watchdog timer, For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO $=1,1$). They do not include the currents flowing into the RTC 32-bit interval timer, and watchdog timer.

Date: Jan. 9, 2024
2. 30- to 64 -pin package products with 192 - to 256 -Kbyte flash ROM and $\mathbf{8 0}$-pin package product with 128- to 256-Kbyte flash ROM
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}^{2}=E V_{s s o}=0 \mathrm{~V}$)

Item	Symbol	Conditions				Min.	Typ.	Max.	Unit
Supply current Note 1	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { IDote } \end{array}$	HALT mode	Subsystem clock operation mode	fSUB $=32.768 \mathrm{kHz}^{\text {Note } 3}$, Low-speed on-chip oscillator operation	$T \mathrm{~A}=-40^{\circ} \mathrm{C}$		0.62	2.94	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.74	3.00	
					$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$		0.88	6.00	

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. In the subsystem clock operation mode or the STOP mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.

Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped.

Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 $=1,1$).
Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode
Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped.
Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 $=1,1$). The current flowing into the RTC is included.
Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

3. 44 - to 80 -pin package products with 384 - to 768 -Kbyte flash ROM and 100 - to 128 -pin package products
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{EV}_{\mathrm{Ss} 0}=0 \mathrm{~V}$)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode	$\mathrm{fIH}=32 \mathrm{MHzNote} 2$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		1.6	-	mA
						$\mathrm{VDD}=1.8 \mathrm{~V}$		1.5	-	
					Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		3.5	5.6	mA
						$\mathrm{VDD}=1.8 \mathrm{~V}$		3.5	5.6	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A/D converter LVD circuit, //O port and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten,

Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.

Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped
Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped

Remark 1. fiH: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (T_{A}) is $25^{\circ} \mathrm{C}$ unless otherwise specified.

Date: Jan. 9, 2024
3. 44- to 80 -pin package products with 384 - to 768 -Kbyte flash ROM and 100 - to 128 -pin package products

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
$\begin{array}{\|l\|l} \hline \text { Supply } \\ \text { current } \\ \text { Note } 1 \end{array}$	IDD1	Operating mode	$\begin{aligned} & \text { HS } \\ & \text { (high-speed main) } \\ & \text { mode } \end{aligned}$	$\mathrm{fiH}=32 \mathrm{MHz}{ }^{\text {Note }} 2$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		1.6	-	mA
						$\mathrm{V} D=1.8 \mathrm{~V}$		1.5	-	
					Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		3.5	5.6	mA
						$\mathrm{V} D \mathrm{D}=1.8 \mathrm{~V}$		3.5	5.6	

Note 1. The listed currents are the total currents flowing into VDD, EVDDO and EVDD1, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0, EVDD1 or Vss, EVsso, EVss1. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes. - The currents in the "Typ." column do not include the operating currents of the peripheral modules. - The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fir: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA) is $25^{\circ} \mathrm{C}$ unless otherwise specified

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

3. 44 - to 80 -pin package products with 384 - to 768 -Kbyte flash ROM and 100 - to 128 -pin package products
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{ss}}=\mathrm{EV}_{\mathrm{Ss} 0}=0 \mathrm{~V}$)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
Supply current Note 1	IDD1	Operating mode	Subsystem clock operation mode	fsub $=32.768 \mathrm{kHz}^{\text {Note } 2}$, Low-speed on-chip oscillator operation	Normal operation	TA $=-40^{\circ} \mathrm{C}$		3.8	7.7	$\mu \mathrm{A}$
						TA $=+25^{\circ} \mathrm{C}$		4.1	8.0	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A/D converter LVD circuit, $/$ I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the current flowing into the RTC 32 bit interval timer, and watchdog timer,
Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO = 1, 1). They do not include the currents flowing into the RTC 32-bit interval timer ${ }_{2}$ and watchdog timer.

Date: Jan. 9, 2024
3. 44- to 80 -pin package products with 384 - to 768 -Kbyte flash ROM and 100 - to 128 -pin package products

(2/4)

Item	Symbol	Conditions					Min.	Typ.	Max.	Unit
Supply current Note 1	IDD1	Operating mode	Subsystem clock operation mode	fsub $=32.768 \mathrm{kHz}^{\text {Note }}$ 2, Low-speed on-chip oscillator operation	Normal operation	TA $=-40^{\circ} \mathrm{C}$		3.8	7.7	$\mu \mathrm{A}$
						$\mathrm{TA}=+25^{\circ} \mathrm{C}$		4.1	8.0	

Note 1. The listed currents are the total currents flowing into VDD, EVDDO and EVDD1, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDD0, EVDD1 or Vss, EVsso, EVss1. In the subsystem clock operation mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
Note 2. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.

Note 3. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, middle-speed onchip oscillator, and low-speed on-chip oscillator are stopped, and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO = 1, 1).

Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

3. 44 - to 80 -pin package products with 384 - to 768 -Kbyte flash ROM and 100 - to 128 -pin package products

($\mathrm{TA}_{\text {A }}=-40$ to $+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{Vdo} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVsso}=0 \mathrm{~V}$)									(3/4)
Item	Symbol	Conditions				Min.	Typ.	Max.	Unit
Supply	IDD2	HALT mode		fill $=32 \mathrm{MHz}^{\text {Note }} 3$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.60	2.00	mA
currenNote			$\begin{aligned} & \text { (high-speed main) } \\ & \text { mode } \end{aligned}$		$\mathrm{VDD}=1.8 \mathrm{~V}$		0.59	1.99	

				$\mathrm{fmX}=8 \mathrm{MHz}^{\text {Note }} 5$ Square wave input	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.13	0.48	mA
					$\mathrm{VDD}=1.8 \mathrm{~V}$	0.11	0.45	
				$\mathrm{fmX}=8 \mathrm{MHz}^{\text {Note }} 5$, Resonator connection	$\mathrm{VDD}=5.0 \mathrm{~V}$	0.22	0.59	mA
					$\mathrm{VDD}=1.8 \mathrm{~V}$	0.21	0.58	

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation curcent but do not include those flowing into the A/D converter LVD circuit, /IO port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped
Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.
Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped

Remark 1. fil: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA_{A}) is $25^{\circ} \mathrm{C}$ unless otherwise specified.

Date: Jan. 9, 2024
3. 44- to 80 -pin package products with 384 - to 768 -Kbyte flash ROM and 100 - to 128 -pin package products

Note 1. The listed currents are the total currents flowing into VDD, EVDDO and EVDD1, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDO, EVDD1 or Vss, EVsso, EVss1. The following points apply in the HS (high-speed main), LS (low-speed main), and LP (low-power main) modes. - The currents in the "Typ." column do not include the operating currents of the peripheral modules. - The currents in the "Max." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
Note 3. The listed currents apply when the high-speed system clock, middle-speed on-chip oscillator, low-speed onchip oscillator, and subsystem clock are stopped.
Note 4. The listed currents apply when the high-speed on-chip oscillator, high-speed system clock, low-speed on-chip oscillator, and subsystem clock are stopped.

Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, low-speed on-chip oscillator, and subsystem clock are stopped.

Remark 1. fiH: High-speed on-chip oscillator clock frequency
Remark 2. fim: Middle-speed on-chip oscillator clock frequency
Remark 3. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 4. The typical value for the ambient operating temperature (TA) is $25^{\circ} \mathrm{C}$ unless otherwise specified

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

3. 44 - to 80 -pin package products with 384 - to 768 -Kbyte flash ROM and 100 - to 128 -pin package products

Item	Symbol	Conditions				Min.	Typ.	Max.	Unit
Supply current Note 1	$\begin{array}{\|l\|l} \hline \text { IDD2 } \\ \text { Note 2 } \end{array}$	HALT mode	Subsystem clock operation mode	fsub $=32.768 \mathrm{kHzNote}{ }^{3}$, Low-speed on-chip oscillator operation	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$		0.62	3.95	$\mu \mathrm{A}$
					$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		0.78	4.00	
					$\mathrm{T} A=+50^{\circ} \mathrm{C}$		1.03	9.16	

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline & & & & & \\
\hline
\end{array}
$$

Note 1. The listed currents are the total currents flowing into VDD and EVDDO, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The currents in the Max column include the peripheral operation current but do not include those flowing into the A/D converter LVD circuit, /l/O port and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution. Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped. They do not include the currents flowing into the RTC 32-bit interval timer, and watchdog timer,
Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped. They do not include the currents flowing inte the RTC 32-bit interval timer, and watchdog timer.
Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO $=1,1$). They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.
Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the current flowing inte the RTC 32-bit interval timer, and watchdog timer, For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode.
Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. They do not include the currents flowing into the RTC, 32-bit interval timer, and watchdog timer.

Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHSO $=1,1$). They do not include the currents flowing into the RTC 32-bit interval timer, and watchdog timer.

Date: Jan. 9, 2024
3. 44 - to 80 -pin package products with 384 - to 768 -Kbyte flash ROM and 100 - to 128 -pin package products

									(4/4)
Item Supply current Note 1	Symbol			Conditions		Min.	Typ.	Max.	Unit
	IDD2	HALT mode	Subsystem clock	fSUB $=32.768 \mathrm{kHz}^{\text {Note }} 3$,	$\mathrm{TA}=-40^{\circ} \mathrm{C}$		0.62	3.95	$\mu \mathrm{A}$
				Low	$\mathrm{TA}=+25^{\circ} \mathrm{C}$		0.78	4.00	
					$\mathrm{TA}=+50^{\circ} \mathrm{C}$		1.03	9.16	

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note 1. The listed currents are the total currents flowing into VDD, EVDDO and EVDD1, including the input leakage currents flowing when the level of the input pin is fixed to VDD, EVDDO, EVDD1 or Vss, EVsso, EVss1. In the subsystem clock operation mode or the STOP mode, the currents in both the "Typ." and "Max." columns do not include the operating currents of the peripheral modules.
Note 2. The listed currents apply when the HALT instruction has been fetched from the flash memory for execution.
Note 3. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and subsystem clock are stopped.

Note 4. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped.

Note 5. The listed currents apply when the high-speed on-chip oscillator, middle-speed on-chip oscillator, high-speed system clock, and low-speed on-chip oscillator are stopped, and the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 $=1,1$).
Note 6. The listed currents with this setting allow retention of the contents of the entire RAM area. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped. For the current for operation of the subsystem clock in the STOP mode, refer to that in the HALT mode
Note 7. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator and subsystem clock oscillation are stopped.
Note 8. The listed currents with this setting allow retention of the contents of a specified 4-Kbyte area of the RAM. The listed currents apply when the low-speed on-chip oscillator is stopped, the setting of RTCLPC is 1 , and the low power consumption oscillation 3 is specified (AMPHS1, AMPHS0 $=1,1$). The current flowing into the RTC is included.
Remark 1. fil: Low-speed on-chip oscillator clock frequency
Remark 2. fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E
5. 37.6.4 Comparator characteristics (Page 1475)

Incorrect

37.6.4 Comparator characteristics

$\mathrm{T}_{\mathrm{A}}=-40$ to $\left.+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=E \mathrm{Vss} 0=E \mathrm{Sss} 1=0 \mathrm{~V}\right)$

Item	Symbol	Conditions		Min.	Typ.	Max.	Unit
Input voltage range	IVREF	Input to the IVREFO and IVREF1 pins $C 0 L V L=0, C 1 L V L=0$		0		$\begin{gathered} \hline \mathrm{VDD}-1.4 \\ \text { and } \\ \text { EVDDO } \end{gathered}$	v
		Input to the IVREFO and IVREF1 pins COLVL $=1, C 1 L V L=1$		1.4		EVDDO	v
	IVCMP	Input to the IVCMP0 and IVCMP1 pins		-0.3		$\begin{gathered} \text { EVDDO } \\ 0.3 \end{gathered}$	v
Output delay	td	$\begin{aligned} & \mathrm{VDD}=3.0 \mathrm{~V} \text {, } \\ & \text { Input slew rate }>1 \mathrm{~V} / \mu \mathrm{s} \end{aligned}$	High-speed mode			1.5	$\mu \mathrm{s}$
			Low-speed mode		3.0		$\mu \mathrm{s}$
Offset voltage	-	High-speed mode				50	mV
		Low-speed mode				40	mV
Operation stabilization wait time	tcmp			30			$\mu \mathrm{s}$
Internal reference voltage	Vbgr2			1.4		1.6	v

Date: Jan. 9, 2024

Correct:
37.6.4 Comparator characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}_{0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=E \mathrm{Sss} 1=0 \mathrm{~V}\right)$

Item	Symbol	Conditions		Min.	Typ.	Max.	Unit
Input voltage range	IVREF	Input to the IVREF0 and IVREF1 pins COLVL $=0, C 1 L V L=0$		0		$\begin{gathered} \hline \operatorname{VDD}-1.4 \\ \text { and } \\ \text { EVDDO } \end{gathered}$	V
		Input to the IVREF0 and IVREF1 pins $C O L V L=1, C 1 L V L=1$		1.4		EVDDO	v
	IvCMP	Input to the IVCMP0 and IVCMP1 pins		-0.3		$\begin{gathered} \text { EVDDO } \\ 0.3 \end{gathered}$	v
Output delay	td	$\mathrm{VDD}=3.0 \mathrm{~V} \text {, }$ Input slew rate > $1 \mathrm{~V} / \mu \mathrm{s}$	High-speed mode			1.5	нs
			Low-speed mode		3.0		$\mu \mathrm{s}$
Offset voltage	-	High-speed mode				50	mV
		Low-speed mode				40	mV
Operation stabilization wait time	tcmp			30			нs
Internal reference voltage ${ }^{\text {Note }}$	VBGR2			1.4		1.6	v

Note The internal reference voltage can be selected as comparator reference voltage only when $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5$ V.

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

6. 12.3.3 A/D converter mode register 0 (ADMO) (Page 547, Page 550 to Page 562)

Incorrect:
(Page 547)

ADCE	A/D voltage comparator operation controlNote 2
0	Stops A/D voltage comparator operation
1	Enables A/D voltage comparator operation

Note 1. For details of the FR2 to FR0, LV1, LV0 bits, and A/D conversion, see Table 12-3 A/D Conversion Time Selection (1/8).
Note 2. While in the software trigger no-wait mode or hardware trigger no-wait mode, the operation of the A/D voltage comparator is controlled by the ADCS and ADCE bits, and it takes $1 \mu \mathrm{~s}+2$ cycles of the conversion clock (fAD) from the start of operation for the operation to stabilize. Therefore, immediately after the ADCS bit is set to 1 after at least $1 \mu \mathrm{~s}+2$ cycles of the conversion clock (fAD) have elapsed from the time ADCE bit is set to 1 , the conversion result becomes valid. When ADCS is set to 1 while ADCE $=0$, A/D conversion starts after the stabilization wait time has passed. If ADCS is set before at least $1 \mu \mathrm{~s}+2$ cycles of the conversion clock (fAD) have elapsed, ignore data of the first conversion.
Caution 1. Change the ADMD, FR2 to FR0, LV1, and LV0 bits while conversion is stopped (ADCS $=0$, ADCE = 0).
Caution 2. Setting change from $\operatorname{ADCS}=1$ and $\mathrm{ADCE}=1$ to $\mathrm{ADCS}=1$ and $\mathrm{ADCE}=0$ is prohibited. Caution 3. Do not change the ADCS and ADCE bits from 0 to 1 at the same time by using an 8 -bit manipulation instruction. Be sure to follow the procedure described in 12.7 A/D Converter Setup Flowchart.

Correct:

ADCE	A/D voltage comparator operation controlNote 2
0	Stops A/D voltage comparator operation
1	Enables A/D voltage comparator operation

Note 1. For details of the FR2 to FR0, LV1, LV0 bits, and A/D conversion, see Table 12-3 A/D Conversion Time Selection (1/8).
Note 2. While in the software trigger no-wait mode or hardware trigger no-wait mode, the operation of the A/D voltage comparator is controlled by the ADCS and ADCE bits, and it takes $1 \mu \mathrm{~s}+2$ cycles of the conversion clock (fAD) from the start of operation for the operation to stabilize. Therefore, immediately after the ADCS bit is set to 1 after at least $1 \mu \mathrm{~s}+2$ cycles of the conversion clock (fAD) have elapsed from the time ADCE bit is set to 1 , the conversion result becomes valid. When ADCS is set to 1 while $A D C E=0, A / D$ conversion starts after the stabilization wait time has passed. If ADCS is set before at least $1 \mu \mathrm{~s}+2$ cycles of the conversion clock (fAD) have elapsed, ignore data of the first conversion.
Caution 1. Change the ADMD, FR2 to FR0, LV1, and LV0 bits while conversion is stopped (ADCS $=0$, ADCE = 0).
Caution 2. Setting change from $\operatorname{ADCS}=1$ and $\operatorname{ADCE}=1$ to $\operatorname{ADCS}=1$ and $\operatorname{ADCE}=0$ is prohibited.
Caution 3. Do not change the ADCS and ADCE bits from 0 to 1 at the same time by using an 8 -bit manipulation instruction. Be sure to follow the procedure described in 12.7 A/D Converter Setup Flowchart.
Caution 4. Following stoppage of conversion by setting the ADCS and ADCE bits to 0 from the conversion standby or conversion state, wait for at least 5μ s before restoring the values of the bits to 1 . Note that, when changing the settings of bits ADMD, FR2 to FRO, LV1, and LV0, start by setting the ADCS and ADCE bits to 0 , then wait for at least 0.2μ sefore changing the rest of the bits.
(Page 550)

ADM1	ADM0			Conversion Clock (fAD)	Conversion Start Time (Number of fclk Clock)	
ADLSP	FR2	FR1	FRO		Software Trigger No-wait Mode/Hardware Trigger No-wait Mode	Software trigger wait mode/ Hardware trigger wait mode
0	0	0	0	fclk 32	31	1
0	0	0	1	fcLk16	15	1
0	0	1	0	fCLK/8	7	1
0	0	1	1	fCLK/4	3	1
0	1	0	0	fCLK/2	1	1
0	1	0	1	fclk	1	1
1	0	1	1	fCLK/4	3	1
1	1	0	0	fCLK/2	1	1
1	1	0	1	fclk	1	1

However, for the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and stabilization wait time for A/D power supply do not occur after a hardware trigger is detected.

Caution 1. If using the hardware trigger wait mode, setting the ADCS bit to 1 is prohibited (but the bit is automatically switched to 1 when the hardware trigger signal is detected). However, it is possible to clear the ADCS bit to 0 to specify the A/D conversion standby state.
Caution 2. While in the one-shot conversion mode of the hardware trigger no-wait mode, the ADCS bit is not automatically cleared to 0 when A/D conversion ends. Instead, 1 is retained.
Caution 3. Only rewrite the value of the ADCE bit when ADCS $=0$ (while in the conversion stopped/conversion standby state)
Caution 4. To complete A/D conversion, specify at least the following time as the hardware trigger interval:
Hardware trigger no wait mode: 2 fcLK clock cycles + conversion start time + A/D conversion time
Hardware trigger wait mode: 2 fcLK clock cycles + conversion start time $+A / D$ power supply stabilization wait time + A/D conversion time

\left.| ADM1 | ADM0 | | | Conversion |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Clock | | | | |
| (fAD) | | | | |$\right)$

However, for the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and stabilization wait time for A/D power supply do not occur after a hardware trigger is detected.

Caution 1. If using the hardware trigger wait mode, setting the ADCS bit to 1 is prohibited (but the bit is automatically switched to 1 when the hardware trigger signal is detected). However, it is possible to clear the ADCS bit to 0 to specify the A/D conversion standby state.
Caution 2. While in the one-shot conversion mode of the hardware trigger no-wait mode, the ADCS bit is not automatically cleared to 0 when A/D conversion ends. Instead, 1 is retained.
Caution 3. Only rewrite the value of the ADCE bit when ADCS $=0$ (while in the conversion stopped/conversion standby state).
Caution 4. To complete A/D conversion, specify at least the following time as the hardware trigger interval:
Hardware trigger no wait mode: 2 fcLK clock cycles + conversion start time + A/D conversion time
Hardware trigger wait mode: 2 fCLK clock cycles + conversion start time $+A / D$ power supply stabilization wait time $+\mathrm{A} / \mathrm{D}$ conversion time $+5 \mu \mathrm{~s}$

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

(Page 551)
Table 12-3 A/D Conversion Time Selection (1/8)

1. When there is no A / D power supply stabilization wait time

Normal mode 1 and 2 (for software trigger no-wait select mode and hardware trigger no-wait select mode)

A/D Converter Mode Register 0 A/D Converter Mode Register 1						Mode	ConversionClock (fAD)	Number of Clock Cycles for ConversionStart Delay	Number of Clock Cycles for Conversion	$\begin{aligned} & \text { Number of } \\ & \text { Clock } \\ & \text { Cycles for } \\ & \text { Interrupt } \\ & \text { Output } \\ & \text { Delay } \end{aligned}$	A/D Conversion Time (Conversion Start Delay Time + Conversion Time + Interrupt Output Delay Time)					
$\left.\begin{array}{\|l\|l} (A D \\ M 1) \end{array}\right)$	(ADMO)												$2.4 \mathrm{~V} \leq$	AVREFP ≤ 1	$\leq 5.5 \mathrm{~V}$	
$\begin{gathered} \mathrm{ADL} \\ \mathrm{SP} \end{gathered} \mathbf{2}$	FR2	FR1	FRO	LV1	Lvo							$\begin{aligned} & \text { fack }= \\ & 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fock }= \\ & 4 \mathrm{MHzz} \end{aligned}$	$\begin{aligned} & \text { fack }= \\ & 8 \mathrm{MHzz} \end{aligned}$	$\begin{gathered} \text { fCLK }= \\ 16 \mathrm{MHz} \end{gathered}$	32 MHz
0	0	0	0	0	0	Normal1	fС¢к32	1 faD	64 fad	1 fad	2112ffLK	Setting prohibited	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \end{array}$	Setting prohibited	$66 \mu \mathrm{~s}$
0	0	0	1				fcLk16	1 fAD	64 fad	1 faD	1056/fıLK	$\begin{array}{\|c} \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	66 нs	$33 \mu \mathrm{~s}$

Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$)
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. Use normal mode 2 when the internal reference voltage or temperature sensor output voltage is selected as the target for A/D conversion.
Caution 5. When the internal reference voltage is selected as the + side reference voltage, normal modes 1 and 2 cannot be used. Use low-voltage mode 1 or 2.

Table 12-3 A/D Conversion Time Selection (1/8)

1. When there is no A / D power supply stabilization wait time

Normal mode 1 and 2 (for software trigger no-wait select mode and hardware trigger no-wait select mode)

A/D Converter Mode Register 0						Mode	ConversionClock (fAD)		Number of Clock Cycles for Conversi	$\left\|\begin{array}{c\|}\text { Number of } \\ \text { Clock } \\ \text { Cycoss for } \\ \text { Interrupt } \\ \text { Output } \\ \text { Delay }\end{array}\right\|$	A/D Conversion Time (Conversion Start Delay Time + Conversion Time + Interrupt Output Delay Time)					
$\begin{aligned} & \left(\begin{array}{l} \text { (AD } \\ \mathrm{M} 1) \end{array}\right. \end{aligned}$	(ADMO)												$2.4 \mathrm{~V} \leq \mathrm{A}$	AVREFP \leq Vod	$0 \leq 5.5 \mathrm{~V}$	
$\begin{array}{\|c} \hline \mathrm{ADL} \\ \mathrm{SP} \end{array}$	FR2	FR1	FRO	LV1	Lvo							$\begin{aligned} & \text { fCLK = } \\ & 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 8 \mathrm{MHz} \end{aligned}$	fCLK $=$ 16 MHz	fCLK $=$ 32 MHz
0	0	0	0	0	0	Normal1	fСık32	1 faD	64 fad	1 fad	2112/fıLк	$\left.\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}\right.$	$\begin{gathered} \text { Setting } \\ \text { prohibite } \end{gathered}$	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \end{array}$	66 нs
0	0	0	1				fctk\|16	1 faD	64 fad	1 fad	1056/fıLK	$\begin{array}{\|c} \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \\ \hline \end{array}$	66 нs	33 нs

Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.

Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2μ s before setting bits FR2 to FR0, LV1, and LV0.
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.

Caution 4. Use normal mode 2 when the internal reference voltage or temperature sensor output voltage is selected as the target for A / D conversion.
Caution 5 . When the internal reference voltage is selected as the + side reference voltage, normal modes 1 and 2 cannot be used. Use low-voltage mode 1 or 2 .

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

(Page 552)

Table 12-3 A/D Conversion Time Selection (2/8)
2. When there is no A / D power supply stabilization wait time

Low-voltage mode 1 and 2 (for software trigger no-wait select mode and hardware trigger no-wait select mode)

A/D Converter Mode Register 0 A/D Converter Mode Register 1						Mode	Conversion Clock (fAD)			Number ofClockCycces forliteryptOutputDelay	AVD Conversion Time (Conversion Start Delay Time +Conversion Time + Interrupt Output Delay Time)					
$\begin{array}{\|c\|} \hline \left.\begin{array}{c} \mathrm{AD} \\ \mathrm{~N}) \end{array} \right\rvert\, \end{array}$	(ADMO)											$\begin{gathered} 1.6 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \text { VDD } \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1.6 \mathrm{~V} \leq \\ \text { AVREFP } \leq \\ \text { VoD } \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1.8 \mathrm{~V} \leq \\ \text { AVREPS } \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.4 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \text { VDD } \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.7 \mathrm{~V} \leq \\ \text { AVREPS } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$
$\begin{array}{\|c} \hline \mathrm{ADL} \\ \mathrm{SP} \end{array}$	FR2	FR1	FRO	LV1	LVo							folk $=$ 1 MHz	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 8 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{gathered} \text { fCLK }= \\ 16 \mathrm{MHz} \end{gathered}$	$\text { fcLK }=$ $32 \mathrm{MHz}$
0	0	0	0	1	0	$\begin{array}{\|c\|c\|} \hline \text { Low } \\ \text { voltage } \end{array}$	fСıк32	1 fad	80 fad	1 fad	2624/fıLK	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	82 нs
0	0	0	1				fСLK16	1 fad	80 fad	1 fad	1312/fıLK	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	82 нs	41 нs

Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$).
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do no include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. When the internal reference voltage or temperature sensor output voltage is selected as the target for A/D conversion, use low-voltage mode 2 and use a conversion clock (fAD) with a frequency no greater than 16 MHz .
Caution 5. When the internal reference voltage is selected as the + side reference voltage, the conversion clock (fAD) must be in the range from 1 to 2 MHz .

Table 12-3 A/D Conversion Time Selection (2/8)
2. When there is no A/D power supply stabilization wait time

Low-voltage mode 1 and 2 (for software trigger no-wait select mode and hardware trigger no-wait select mode)

A/D Converter Mode Register 0 A/D Converter Mode Register 1						Mode	Conversion Clock (fAD)			Number of Clock Cycles for Interrup Delay	A/D Conversion Time (Conversion Start Delay Time + Conversion Time + Interrupt Output Delay Time)					
$\left(\left.\begin{array}{l} (A D \\ \left.\mathrm{A}_{1}\right) \end{array} \right\rvert\,\right.$	(ADMO)											$\begin{gathered} 1.6 \mathrm{~V} \leq \\ \text { AVREFP } \leq \\ \text { VoD } \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1.6 \mathrm{~V} \leq \\ \text { AVREFP } \leq \\ \text { VDD } \leq \end{gathered}$ $5.5 \mathrm{~V}$	$\begin{gathered} 1.8 \mathrm{~V} \leq \\ \text { AVREFP } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.4 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \text { VDD } \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.7 \mathrm{~V} \leq \\ \text { AVREFP } \leq \\ \text { VDD } \leq \\ 5.5 \mathrm{~V} \end{gathered}$
$\begin{gathered} \mathrm{ADL} \\ \mathrm{SP} \end{gathered}$	FR2	FR1	FRO	LV1	LVo							folk $=$ 1 MHz	$\begin{aligned} & \text { fack }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 8 \mathrm{MHz} \end{aligned}$	fCLK $=$ 16 MHz	$\begin{gathered} \text { fCLK }= \\ 32 \mathrm{MHz} \end{gathered}$
0	0	0	0	1	0	$\begin{array}{\|c\|c\|} \hline \text { Low } \\ \text { voltage } \end{array}$	fCLK32	${ }_{\text {fad }}$	30 fad	1 fad	2624/flck	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	Setting prohibited	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	82 нs
0	0	0	1				fCLK16	${ }_{\text {fad }}$	30 fad	AD	1312/fclk	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	Setting prohibited	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	82 нs	41 нs

Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2μ s before setting bits FR2 to FRO, LV1, and LVO.
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.

Caution 4. When the internal reference voltage or temperature sensor output voltage is selected as the target for A/D conversion, use low-voltage mode 2 and use a conversion clock (fAD) with a frequency no greater than 16 MHz .
Caution 5. When the internal reference voltage is selected as the + side reference voltage, the conversion clock (fAD) must be in the range from 1 to 2 MHz .

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

(Page 553 to Page 554)

Table 12-3 A/D Conversion Time Selection (3/8)
3. When there is A / D power supply stabilization wait time

Normal mode 1 and 2 (for software trigger wait select mode and hardware trigger wait select mode ${ }^{\text {Note } 1}$)

Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and A / D power supply stabilization wait time do not occur after a hardware trigger is detected (see Table 12-3 A/D Conversion Time Selection (1/8)).
Note 2. The value in this column is applicable when the one-shot conversion mode is selected. When the sequential conversion mode is selected, the number of clock cycles is shortened by 3 cycles of the conversion clock (fAD)
Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped $(A D C S=0, A D C E=0)$.
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. The conversion times in hardware trigger wait mode include the A/D power supply stabilization wait time from the time the hardware trigger is detected. The conversion times in software trigger wait mode include the A/D power supply stabilization wait time from the time the ADCS bit is set to 1 .

Table 12-3 A/D Conversion Time Selection (3/8)
3. When there is A / D power supply stabilization wait time

Normal mode 1 and 2 (for software trigger wait select mode and hardware trigger wait select mode ${ }^{\text {Note } 1}$)

Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected (see Table 12-3 A/D Conversion Time Selection (1/8)).
Note 2. The value in this column is applicable when the one-shot conversion mode is selected. When the sequential conversion mode is selected, the number of clock cycles is shortened by 3 cycles of the conversion clock (fAD).
Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2μ s before setting bits FR2 to FRO, LV1, and LV0.
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. The conversion times in hardware trigger wait mode include the A/D power supply stabilization wait time from the time the hardware trigger is detected. The conversion times in software trigger wait mode include the A/D power supply stabilization wait time from the time the ADCS bit is set to 1 .

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

(Page 555 to Page 556)

Table 12-3 A/D Conversion Time Selection (4/8)
4. When there is A / D power supply stabilization wait time

Low-voltage mode 1 and 2 (for software trigger wait select mode and hardware trigger wait select mode ${ }^{\text {Note }}{ }^{1}$)

A/D Converter Mode Register 0 A/D Converter Mode Register 1						Mode	Conversion Clock (fad)	Number ofClockCycles forAyD PowerSupplyStabilizationWait	Number of Clock Cycles for Conversion	Number of Clock Cycoses for Interrupt Output Delay Note 2	A/D Conversion Time (A/D Power Supply Stabilization Wait Time + Conversion Time + Interrupt Output Delay Time)					
$\left(\left.\begin{array}{l} (A D \\ M 1) \end{array} \right\rvert\,\right.$	(ADMO)											$1.6 \mathrm{~V} \leq$ AVREP \leq VDD \leq 5.5 V	$\begin{gathered} 1.6 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \mathrm{VDO} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1.8 \mathrm{~V} \leq \\ \text { AVREFP } \leq \\ \mathrm{VDDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.4 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.7 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \text { VoD } \leq \\ 5.5 \mathrm{~V} \end{gathered}$
$\left.\begin{array}{c} \mathrm{ADL} \\ \mathrm{SP} \end{array}\right)$	FR2	FR1	FRO	LV1	Lvo							fCLK $=$ 1 MHz	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { feck }= \\ & 8 \mathrm{MHzz} \end{aligned}$	$\begin{gathered} \text { fCLK } \\ 16 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & \text { fCLK }= \\ & 32 \mathrm{MHz} \end{aligned}$
0	0	0	0	1	0	$\begin{array}{\|c\|} \hline \text { Low } \\ \text { voltage } \\ 1 \end{array}$	fCLK32	4 fad	80 fad	4 faD	2816/fcıı	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	88 нs
0	0	0	1				fcik/16	4 fad	80 fad	4 fad	1408/fcık	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	88 нs	44 нs

Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and A / D power supply stabilization wait time do not occur after a hardware trigger is detected (see Table 12-3 A/D Conversion Time Selection (2/8)).
Note 2. The value in this column is applicable when the one-shot conversion mode is selected. When the sequential conversion mode is selected, the number of clock cycles is shortened by 3 cycles of the conversion clock (fAD).
Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tCONV) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$).
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. The conversion times in hardware trigger wait mode include the A/D power supply stabilization wait time from the time the hardware trigger is detected. The conversion times in software trigger wait mode include the A/D power supply stabilization wait time from the time the ADCS bit is set to 1 .

Table 12-3 A/D Conversion Time Selection (4/8)
4. When there is A / D power supply stabilization wait time

Low-voltage mode 1 and 2 (for software trigger wait select mode and hardware trigger wait select mode ${ }^{\text {Note }}{ }^{1}$)

A/D Converter Mode Register 0 A/D Converter Mode Register 1						Mode	Conversion Clock (fAD) Clock (fAD)	Number ofClockCycles forAD PowerSupplyStabilizationWait	Clock Cycles for Conversion	Number of Clock Cycles for Interrupt Output DelayNote 2	A/D Conversion Time (A/D Power Supply Stabilization Wait Time + Conversion Time + Interrupt Output Delay Time)					
$\left(\left.\begin{array}{l} (A D \\ \mathrm{M} 1) \end{array} \right\rvert\,\right.$	(ADMO)											$1.6 \mathrm{~V} \leq$ AVREFP \leq VDD 5.5 V	$\begin{gathered} 1.6 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1.8 \mathrm{VE} \leq \\ \text { AVRFFS } \\ \text { VoD } \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.4 \mathrm{~V} \leq \\ \text { AVREFP } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.7 \mathrm{~V} \leq \\ \text { AVREFPS} \\ V \mathrm{SOD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$
$\begin{gathered} \mathrm{ADL} \\ \mathrm{SP} \end{gathered}$	FR2	FR1	FRO	LV1	LVo							$\begin{aligned} & \text { fCLK }= \\ & 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { feck }= \\ & 8 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { fCLK }= \\ 16 \mathrm{MHz} \\ \hline \end{array}$	$\begin{aligned} & \text { fCLK }= \\ & 32 \mathrm{MHz} \end{aligned}$
0	0	0	0	1	0	$\begin{array}{\|c\|} \hline \text { Low } \\ \text { voltage } \end{array}$	fCLK32	4 fad	${ }^{80} \mathrm{faD}$	4 fAD	2816/fıLk	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	Setting prohibited	Setting prohibited	${ }^{88} \mu \mathrm{~s}$
0	0	0	1				fCLK/16	4 fad	80 fad	4 fad	1408/fıцк	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	Setting prohibited	88 нs	44 us

Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected (see Table 12-3 A/D Conversion Time Selection (2/8)).
Note 2. The value in this column is applicable when the one-shot conversion mode is selected. When the sequential conversion mode is selected, the number of clock cycles is shortened by 3 cycles of the conversion clock (fAD).
Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tCONV) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2μ s before setting bits FR2 to FR0, LV1, and LV0.
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.

Caution 4. The conversion times in hardware trigger wait mode include the A/D power supply stabilization wait time from the time the hardware trigger is detected. The conversion times in software trigger wait mode include the A/D power supply stabilization wait time from the time the ADCS bit is set to 1 .

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

(Page 557)

Table 12-3 A/D Conversion Time Selection (5/8)
5. When there is no A / D power supply stabilization wait time

Normal mode 1 and 2 (for software trigger no-wait scan mode and hardware trigger no-wait scan mode)

A/D Converter Mode Register 0 A/D Converter Mode Register 1						Mode	Conversion Clock (fad)			Number of Clock Cycles for literupt Ioutput Oelay	A/D Conversion Time (Conversion Start Delay Time + Conversion Time $\times 4$ + Interrupt Output Delay Time)					
$\begin{array}{\|l\|} \hline(\mathrm{AD} \\ \mathrm{M1}) \end{array}$	(ADMO)												$2.4 \mathrm{~V} \leq \mathrm{A}$	AVREPP \leq Vod	$\leq 5.5 \mathrm{~V}$	
$\begin{gathered} \mathrm{ADL} \\ \mathrm{SP} \end{gathered}$	FR2	FR1	FRO	LV1	LVo							$\begin{aligned} & \text { falk }= \\ & 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 8 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { fCLK }= \\ 16 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \hline \text { fcLK }= \\ 32 \mathrm{MHz} \end{gathered}$
0	0	0	0	0	0	$\begin{gathered} \hline \text { Normal } \\ 1 \end{gathered}$	fсıк32	1 fad	64 fad	1 fad	8256/fс¢к	Setting prohibited prohibited	Setting prohibited prohibited	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibite } \end{array}$	Setting prohibited prohibited	258 нs
0	0	0	1				fcık16	1 fad	64 faD	1 faD	4128/f¢¢	Setting prohibited prohibited	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	258 нs	129 нs

Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tCONV) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$).
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. Use normal mode 2 when the internal reference voltage or temperature sensor output voltage is selected as the target for A/D conversion.
Caution 5 . When the internal reference voltage is selected as the + side reference voltage, normal modes 1 and 2 cannot be used. Use low-voltage mode 1 or 2 .

Table 12-3 A/D Conversion Time Selection (5/8)
5. When there is no A/D power supply stabilization wait time

Normal mode 1 and 2 (for software trigger no-wait scan mode and hardware trigger no-wait scan mode)

A/D Converter Mode Register 0 A/D Converter Mode Register 1						Mode	Conversion Clock (fad)	$\left.\begin{aligned} & \text { Number of } \\ & \text { Clock } \\ & \text { Cycles for } \\ & \text { Conversion } \\ & \text { Start Delay } \end{aligned} \right\rvert\,$		Number of Clock Cycles for Interrupt Output Delay	A/D Conversion Time (Conversion Start Delay Time + Conversion Time $\times 4+$ Interrupt Output Delay Time)					
$\begin{array}{\|l\|} \hline\left(\begin{array}{l} \text { AD } \end{array}\right) \\ \hline \end{array}$	(ADMO)												2.4 V	AVREFP \leq	¢ 5.5 V	
$\begin{array}{\|c} \hline \mathrm{ADL} \\ \mathrm{SP} \end{array}$	FR2	FR1	FRO	LV1	LV0							$\begin{aligned} & \text { fCLK }= \\ & 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fock }= \\ & 8 \mathrm{MHz} \end{aligned}$	fCLK $=$ 16 MHz	$\text { fCLK }=$ $32 \mathrm{MHz}$
0	0	0	0	0	0	Normal 1	fcık32	1 fad	64 fad	1 faD	8256/fıடк	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	258 \%
0	0	0	1				fcık16	1 fad	64 fad	1 faD	4128/fıடк	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \end{array}$	258 s	129 нs

Caution 1. The A / D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2μ s before setting bits FR2 to FR0, LV1, and LV0.
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. Use normal mode 2 when the internal reference voltage or temperature sensor output voltage is selected as the target for A / D conversion.
Caution 5. When the internal reference voltage is selected as the + side reference voltage, normal modes 1 and 2 cannot be used. Use low-voltage mode 1 or 2 .

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

(Page 558)
Table 12-3 A/D Conversion Time Selection (6/8)
6. When there is no A / D power supply stabilization wait time

Low-voltage mode 1 and 2 (for software trigger no-wait scan mode and hardware trigger no-wait scan mode)

A/D Converter Mode Register 0 A/D Converter Mode Register 1						Mode	$\begin{array}{\|l\|l} \text { Conversion } \\ \text { Clock (fad) } \end{array}$		Number of Clock Cycles for Conversio	Number of Clock Cycles for Interrupt Output Delay	A/D Conversion Time (Conversion Start Delay Time + Conversion Time $\times 4+$ Interrupt Output Delay Time)					
$\binom{\text { (AD }}{\mathrm{M1}}$	(ADMO)											$\begin{gathered} 1.6 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ V D D \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 1.6 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \text { VDD } \end{gathered}$ $5.5 \mathrm{v}$	$\begin{gathered} 1.8 \mathrm{~V} \leq \\ \text { AVRFPP } \leq \\ \text { VDD } \end{gathered}$ $\begin{aligned} & \mathrm{VDO} \leq \\ & 5.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 2.4 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$2.7 \mathrm{~V} \leq$ AVREFP \leq $\mathrm{VDD} \leq$ 5.5
$\begin{array}{\|c} \hline \mathrm{ADL} \\ \mathrm{SP} \end{array}$	FR2	FR1	FRO	LV1	Lvo							$\begin{aligned} & \text { fCLK }= \\ & 1 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fack }= \\ & 8 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{gathered} \text { fCLK }= \\ 16 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \text { fCLK }= \\ 32 \mathrm{MHz} \\ \hline \end{gathered}$
0	0	0	0	1	0	$\begin{array}{\|c\|} \hline \text { Low } \\ \text { voltage } \\ 1 \end{array}$	fclk32	1 fAD	80 fad	1 fAD	10304/fclk	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	Setting prohibited	$\begin{array}{\|c} \text { Setting } \\ \text { prohibited } \end{array}$	322 Hs
0	0	0	1				fcık16	1 fad	80 fad	1 fad	5152/fı<к	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	Setting prohibited prohibited	322 нs	161 нs

Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$).
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. When the internal reference voltage or temperature sensor output voltage is selected as the target for A/D conversion, use low-voltage mode 2 and use a conversion clock (fAD) with a frequency no greater than 16 MHz .
Caution 5. When the internal reference voltage is selected as the + side reference voltage, the conversion clock (fAD) must be in the range from 1 to 2 MHz .

Table 12-3 A/D Conversion Time Selection (6/8)
6. When there is no A/D power supply stabilization wait time

Low-voltage mode 1 and 2 (for software trigger no-wait scan mode and hardware trigger no-wait scan mode)

A/D Converter Mode Register 0A/D Converter Mode Register 1						Mode	Conversion Clock (fAD)		Number of Cycles fo Cycles forConversion\qquad	Number of Clock Cycles for Interrupt Output Delay	A/D Conversion Time (Conversion Start Delay Time + Conversion Time $\times 4+$ Interrupt Output Delay Time)					
$\binom{(\mathrm{AD}}{\mathrm{M1})}$	(ADMO)											$1.6 \mathrm{~V} \leq$ AVREFP \leq $\mathrm{VDD} \leq$ 5.5 V	$1.6 \mathrm{~V} \leq$ AVREP \leq VDDS 5.5 V	$\begin{gathered} 1.8 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$2.4 \mathrm{~V} \leq$ AVREFP \leq $\mathrm{VDD} \leq$ 5.5 V	$\begin{gathered} 2.7 \mathrm{~V} \leq \\ \text { AVREFP } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$
$\begin{array}{\|l\|} \hline \begin{array}{c} \text { ADL } \\ \mathrm{SP} \end{array} \\ \hline \end{array}$	FR2	FR1	FRO	LV1	LVo							$\begin{aligned} & \text { fCLK }= \\ & 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { folk }= \\ & 8 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 16 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \text { fCLK }= \\ 32 \mathrm{MHz} \\ \hline \end{gathered}$
0	0	0	0	1	0	$\begin{array}{\|c\|} \hline \text { Low } \\ \text { voltage } \\ 1 \end{array}$	fclk32	1 fAD	${ }^{80} \mathrm{fad}$	1 fad	10304/fcl	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c} \text { Setting } \\ \text { prohibited } \end{array}$	Setting prohibited	322 нs
0	0	0	1				fсık16	1 fAD	80 fad	1 fad	5152/fc	Setting prohibited	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	322 s	161 нs

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 1 |

Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least $0.2 \mu \mathrm{~s}$ before setting bits FR2 to FR0, LV1, and LV0
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. When the internal reference voltage or temperature sensor output voltage is selected as the target for A/D conversion, use low-voltage mode 2 and use a conversion clock (fAD) with a frequency no greater than 16 MHz .
Caution 5. When the internal reference voltage is selected as the + side reference voltage, the conversion clock (fAD) must be in the range from 1 to 2 MHz .

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

(Page 559 to Page 560)

Table 12-3 A/D Conversion Time Selection (7/8)
7. When there is A / D power supply stabilization wait time

Normal mode 1 and 2 (for software trigger wait scan mode and hardware trigger wait scan mode ${ }^{\text {Note } 1}$)

A/D Converter Mode Register 0						Mode	Conversion Clock (fAD)	Number of Clock cycoser for AyD Power AD Puph Supply Stabization Wait	Number of Clock Cycles for Conversion	Number of Clock Cycoser for Interrupt Output Delay Note 2	A/D Conversion Time (A/D Power Supply Stabilization Wait Time + Conversion Time $\times 4$ + Interrupt Output Delay Time)					
$\left.\begin{array}{\|l\|l\|} (A D \\ M 1) \end{array}\right)$	(ADMO)												$2.4 \mathrm{~V} \leq \mathrm{A}$	VREPP \leq VDD	$0 \leq 5.5 \mathrm{~V}$	
$\left.\begin{array}{c\|} \hline \mathrm{ADL} \\ \mathrm{SP} \end{array} \right\rvert\,$	FR2	FR1	FRO	LV1	LV0							$\begin{aligned} & \text { fock }= \\ & 1 \mathrm{MHzz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fack }= \\ & 8 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fClk }= \\ & 16 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK = } \\ & 32 \mathrm{MHz} \end{aligned}$
0	0	0	0	0	0	Normal	fсıK32	4 AAD	64 AD	4 fad	8448/fсık	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \end{array}$	Setting prohibited	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \end{array}$	264 нs
0	0	0	1				fCLK16	4 fad	64 AD	4 fad	4224/fclk	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	264 Hs	132 нs

| | | | | | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and A / D power supply stabilization wait time do not occur after a hardware trigger is detected (see Table 12-3 A/D Conversion Time Selection (1/8)).
Note 2. The value in this column is applicable when the one-shot conversion mode is selected. When the sequential conversion mode is selected, the number of clock cycles is shortened by 3 cycles of the conversion clock (fAD)
Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tCONV) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped $($ ADCS $=0$, ADCE $=0)$
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. The conversion times in hardware trigger wait mode include the A/D power supply stabilization wait time from the time the hardware trigger is detected. The conversion times in software trigger wait mode include the A/D power supply stabilization wait time from the time the ADCS bit is set to 1 .

Table 12-3 A/D Conversion Time Selection (7/8)
7. When there is A / D power supply stabilization wait time

Normal mode 1 and 2 (for software trigger wait scan mode and hardware trigger wait scan mode ${ }^{\text {Note } 1}$)

A/D Converter Mode Register 0						Mode	Conversion Clock (fAD)	Number of Clock Cycoser for AyD Power AD Supply Stabilizaion Wait$\|$	Number of Cycles for Conversion	Number of Clock Cycles for Output Delay Note 2	A/D Conversion Time (A/D Power Supply Stabilization Wait Time + Conversion Time $\times 4$ + Interrupt Output Delay Time)												
$\begin{array}{\|l\|} \hline \text { (AD } \\ \mathrm{M} 1) \end{array}$	(ADMO)												$2.4 \mathrm{~V} \leq 1$	Vrefp $\leq V_{D}$	O $\leq 5.5 \mathrm{~V}$								
$\begin{array}{\|l\|} \hline \text { ADL } \\ \text { SP } \end{array}$	FR2	FR1	FRO	LV1	LVo							$\begin{aligned} & \text { fack }= \\ & 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fack }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 8 \mathrm{MHz} \end{aligned}$	fCLK $=$ 16 MHz	$\text { fCLK }=$ $32 \mathrm{MHz}$							
0	0	0	0	0	0	Normal	fс¢к32	4 fad	64 fad	4 faD	8448ffclk	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \end{array}$	Setting protibited	$\begin{array}{\|c} \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c} \hline \text { Setting } \\ \text { prohibited } \end{array}$	264 нs							
0	0	0	1				folk16	4 fAD	64 fAD	4 AAD	4224ffick	Setting prohibited	Setting protibited	$\begin{array}{\|c} \text { Setting } \\ \text { prohibited } \end{array}$	264 [s	132 нs							
1	1	0	1				flık	6 fad	181 faD	4 fad	734/fıLK	734 нs	183.5 ¢	Setting	Setting prohibited prohibited	Setting prohibited							
Other than the above											Setting p	ibited											

Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected (see Table 12-3 A/D Conversion Time Selection (1/8)).
Note 2. The value in this column is applicable when the one-shot conversion mode is selected. When the sequential conversion mode is selected, the number of clock cycles is shortened by 3 cycles of the conversion clock (fAD).
Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tCONV) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2μ s before setting bits FR2 to FR0, LV1, and LV0.
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. The conversion times in hardware trigger wait mode include the A/D power supply stabilization wait time from the time the hardware trigger is detected. The conversion times in software trigger wait mode include the A/D power supply stabilization wait time from the time the ADCS bit is set to 1 .

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

(Page 561 to Page 562)

Table 12-3 A/D Conversion Time Selection (8/8)
8 . When there is A / D power supply stabilization wait time
Low-voltage mode 1 and 2 (for software trigger wait scan mode and hardware trigger wait scan mode ${ }^{\text {Note }}$ ${ }^{1}$)

A/D Converter Mode Register 0 A/D Converter Mode Register 1						Mode	ConversionClock (faD)	Number ofClockCycless forADP PowrSupplyStabilizationWait	Number of Clock Cycles for Conversion	Number of Cycles for Interrupt Output Delay Note 2	A/D Conversion Time (A/D Power Supply Stabilization Wait Time + Conversion Time $\times 4+$ Interrupt Output Delay Time)					
$\binom{\text { (AD }}{\mathrm{A} 11}$	(ADMO)											$\begin{gathered} 1.6 \mathrm{~V} \leq \\ \text { AVREPP } \leq \\ \text { VDD } \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$1.6 \mathrm{~V} \leq$ VDDs 5.5 V	$\begin{gathered} 1.8 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.4 \mathrm{~V} \leq \\ \text { AVREP } \leq \\ \mathrm{VDD} \leq \\ 5.5 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2.7 \mathrm{~V} \leq \\ \text { AVREPP } \leq \\ \text { VDD } \leq \\ 5.5 \mathrm{~V} \end{gathered}$
$\begin{aligned} & \text { ADL } \\ & \mathrm{S} \end{aligned}$	FR2	FR1	FRO	LV1	LVo							$\begin{aligned} & \text { fCLK }= \\ & 1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { fCLK }= \\ & 4 \mathrm{MHz} \end{aligned}$	$\text { fCLK }=$ $8 \mathrm{MHz}$	fCLK = 16 MHz	fCLK $=$ 32 MHz
0	0	0	0	1	0	$\begin{array}{\|c\|} \hline \text { Low } \\ \text { voltage } \end{array}$	fclk32	4 fad	${ }^{\text {B0 fad }}$	4 fad	0496/fcl	$\begin{gathered} \text { Setting } \\ \text { prohibited } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	328 нs
0	0	0	1				fcık\|16	4 fad	80 fad	4 faD	5248/f	$\begin{array}{\|c} \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c\|} \hline \text { Setting } \\ \text { prohibited } \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Setting } \\ \text { prohibited } \end{array} \\ \hline \end{array}$	328 н	164 нs

Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and A / D power supply stabilization wait time do not occur after a hardware trigger is detected (see Table 12-3 A/D Conversion Time Selection (2/8)).
Note 2. The value in this column is applicable when the one-shot conversion mode is selected. When the sequential conversion mode is selected, the number of clock cycles is shortened by 3 cycles of the conversion clock (fAD).
Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tconv) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped ($\mathrm{ADCS}=0, \mathrm{ADCE}=0$).
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. The conversion times in hardware trigger wait mode include the A/D power supply stabilization wait time from the time the hardware trigger is detected. The conversion times in software trigger wait mode include the A/D power supply stabilization wait time from the time the ADCS bit is set to 1 .

Table 12-3 A/D Conversion Time Selection (8/8)
8 . When there is A / D power supply stabilization wait time
Low-voltage mode 1 and 2 (for software trigger wait scan mode and hardware trigger wait scan mode ${ }^{\text {Note }}$ ${ }^{1}$)

Note 1. For the second and subsequent conversion in sequential conversion mode and for conversion of the channels specified for scan 1,2 , and 3 in scan mode, the conversion start time and A/D power supply stabilization wait time do not occur after a hardware trigger is detected (see Table 12-3 A/D Conversion Time Selection (2/8)).
Note 2. The value in this column is applicable when the one-shot conversion mode is selected. When the sequential conversion mode is selected, the number of clock cycles is shortened by 3 cycles of the conversion clock (fAD).

Caution 1. The A/D conversion time must be selected within the relevant ranges of the conversion clock (fAD) and conversion times (tCONV) described in 37.6.1 A/D converter characteristics.
Caution 2. Rewrite the FR2 to FR0, LV1, and LV0 bits to different values while conversion is stopped (ADCS $=0$, ADCE $=0$). When conversion is to be stopped while the A/D converter is on standby or is operating, wait for at least 0.2μ s before setting bits FR2 to FR0, LV1, and LV0.
Caution 3. The above conversion times do not include the conversion start time. Add the conversion start time to obtain the time for the first conversion. Additionally, the conversion times do not include clock frequency errors. Consider clock frequency errors when selecting the conversion time.
Caution 4. The conversion times in hardware trigger wait mode include the A/D power supply stabilization wait time from the time the hardware trigger is detected. The conversion times in software trigger wait mode include the A/D power supply stabilization wait time from the time the ADCS bit is set to 1 .

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

7. 12.3.4 A/D converter mode register 1 (ADM1) (Page 564)

Incorrect:

Caution 1. Only rewrite the value of the ADM1 register while conversion operation is stopped (ADCS $=0$, ADCE $=0$).
Caution 2. To complete A/D conversion, specify at least the following time as the hardware trigger interval:
Hardware trigger no wait mode: 2 fcLk clock cycles + conversion start time + A/D conversion time
Hardware trigger wait mode: $\mathbf{2}$ fclk clock cycles + conversion start time + A/D power supply stabilization wait time + A/D conversion time
Caution 3. In modes other than the SNOOZE mode, input of the next INTRTC or INTITL will not be recognized as a valid hardware trigger for up to four fCLK cycles after the first INTRTC or INTITL is input.

Correct:

Caution 1. Only rewrite the value of the ADM1 register while conversion operation is stopped (ADCS $=0$ ADCE $=0$).
Caution 2. To complete A/D conversion, specify at least the following time as the hardware trigger interval:
Hardware trigger no wait mode: 2 fcLK clock cycles + conversion start time + A/D conversion time
Hardware trigger wait mode: 2 fcLk clock cycles + conversion start time + A/D power supply stabilization wait time + A/D conversion time $+5 \mu \mathrm{~s}$
Caution 3. In modes other than the SNOOZE mode, input of the next INTRTC or INTITL will not be recognized as a valid hardware trigger for up to four fCLK cycles after the first INTRTC or INTITL is input.

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

8. 12.3.5 A/D converter mode register 2 (ADM2) (Page 565, Page 566)

Incorrect:
 (Page 565)

Figure 12-8 Format of A/D Converter Mode Register 2 (ADM2) (1/2)

Address:	F0010
After reset:	00 H
R/W:	R/W

Symbol	7	6	5	4	<3>	<2>	<1>	<0>
ADM2	ADREFP1	ADREFPO	ADREFM	0	ADRCK	AWC	ADTYP1	ADTYP0

ADREFP1	ADREFP0	Selection of the + side reference voltage source of the A/D converter
0	0	Supplied from VDD
0	1	Supplied from P20/AVREFP/ANIO
1	0	Supplied from the internal reference voltage (1.48 V (typ.))
1	1	Discharged

- Use the following procedures to rewrite the ADREFP1 and ADREFPO bits.

1. Set ADCE $=0$
2. Set both ADREFP1 and ADREFPO to 1

This step is only necessary when the values of ADREFP1 and ADREFPO are changed to 1 and 0 , respectively.
3. Reference voltage discharge time: $1 \mu \mathrm{~s}$

This step is only necessary when the values of ADREFP1 and ADREFP0 are changed to 1 and 0 , respectively.
4. Change the values of ADREFP1 and ADREFPO
5. Reference voltage stabilization wait time count A
6. Set ADCE $=1$
7. Reference voltage stabilization wait time count B

When ADREFP1 and ADREFP0 are set to 1 and $0, \mathrm{~A}=5 \mu \mathrm{~s}$ and $\mathrm{B}=1 \mu \mathrm{~s}+2$ cycles of the conversion clock (f_{AD}).
When ADREFP 1 and ADREFP0 are set to 0 and 0 or 0 and 1 , A needs no wait and $B=1 \mu s+2$ cycles of the conversion clock (fad).
After 7. stabilization time, start the A / D conversion
When ADREFP1 and ADREFP0 are set to 1 and 0 , respectively, A/D conversion cannot be performed on the temperature sensor output voltage and internal reference voltage (1.48 V (typ.)).
Be sure to perform A/D conversion while ADISS $=0$.

Correct:

Figure 12-8 Format of A/D Converter Mode Register 2 (ADM2) (1/2)
Address: $\mathrm{FOO10H}$
After reset: 00 H
R/W:
R/W

Symbol	7	6	5	4	<3>	<2>	<1>	<0>
ADM2	ADREFP1	ADREFP0	ADREFM	0	ADRCK	AWC	ADTYP1	ADTYP0

ADREFP1	ADREFP0	Selection of the + side reference voltage source of the A/D converter
0	0	Supplied from VDD
0	1	Supplied from P20/AVREFP/ANIO
1	0	Supplied from the internal reference voltage (1.48 V (typ.))
1	1	Discharged

Use the following procedures to rewrite the ADREFP1 and ADREFPO bits.

1. Set $\operatorname{ADCE}=0$
2. Wait for at least $0.2 \mu \mathrm{~s}$.
3. Set both ADREFP1 and ADREFPO to 1 .

This step is only necessary when the values of ADREFP1 and ADREFP0 are changed to 1 and 0 respectively.
4. Reference voltage discharge time: $1 \mu \mathrm{~s}$

This step is only necessary when the values of ADREFP1 and ADREFP0 are changed to 1 and 0 , respectively.
5. Change the values of ADREFP1 and ADREFPO
6. Reference voltage stabilization wait time count A
7. Set ADCE $=1$
8. Reference voltage stabilization wait time count B

When ADREFP1 and ADREFP0 are set to 1 and $0, A=5 \mu \mathrm{~s}$ and $\mathrm{B}=1 \mu \mathrm{~s}+2$ cycles of the conversion clock (fad).
When ADREFP1 and ADREFP0 are set to 0 and 0 or 0 and $1, A=4.8 \mu$ sand $B=1 \mu$ s +2 cycles of the conversion clock (f_{AD}).
After 8. stabilization time, start the A/D conversion
When ADREFP1 and ADREFP0 are set to 1 and 0 , respectively, A/D conversion cannot be performed on the temperature sensor output voltage and internal reference voltage (1.48 V (typ.))
the temperature sensor output voltage and interna
(Page 566)

AWC	Specification of the SNOOZE mode
0	Do not use the SNOOZE mode.
1	Use the SNOOZE mode.

When there is a hardware trigger signal in the STOP mode, the STOP mode is exited, and A/D conversion is performed without operating the CPU (the SNOOZE mode)
The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock or medium-speed onchip oscillator clock is selected for the CPU/peripheral hardware clock (fcLk). If any other clock is selected, specifying this mode is prohibited.

- When using the SNOOZE mode, set AWC to 0 in software trigger wait mode, and set AWC to 1 in hardware trigger wait mode
Using the SNOOZE mode in the software trigger no-wait mode or hardware trigger no-wait mode is prohibited
- Using the SNOOZE mode in hardware trigger no-wait mode in sequential conversion mode is prohibited. - When using the SNOOZE mode, specify a hardware trigger interval of at least "shift time to SNOOZE mode ${ }^{\text {Note }}+$ conversion start time $+A / D$ power supply stabilization wait time + A/D conversion time +2 fcLk clock cycles."
- Even when using the SNOOZE mode, be sure to set the AWC bit to 0 in normal operation and change it to 1 just before shifting to STOP mode.
Also, be sure to change the AWC bit to 0 after returning from STOP mode to normal operation.
If the AWC bit is left set to $1, A / D$ conversion will not start normally in spite of the subsequent SNOOZE mode or normal operation.

AWC	Specification of the SNOOZE mode
0	Do not use the SNOOZE mode.
1	Use the SNOOZE mode.

When there is a hardware trigger signal in the STOP mode, the STOP mode is exited, and A/D conversion is performed without operating the CPU (the SNOOZE mode).

- The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock or medium-speed onchip oscillator clock is selected for the CPU/peripheral hardware clock (fcck). If any other clock is selected, specifying this mode is prohibited.
- When using the SNOOZE mode, set AWC to 0 in software trigger wait mode, and set AWC to 1 in hardware trigger wait mode.
- Using the SNOOZE mode in the software trigger no-wait mode or hardware trigger no-wait mode is prohibited.
- Using the SNOOZE mode in hardware trigger no-wait mode in sequential conversion mode is prohibited. - When using the SNOOZE mode, specify a hardware trigger interval of at least "shift time to SNOOZE mode ${ }^{\text {Note }}+$ conversion start time + A/D power supply stabilization wait time + A/D conversion time +2 fclk clock cycles $+5 \mu \mathrm{~s}$ ".
- Even when using the SNOOZE mode, be sure to set the AWC bit to 0 in normal operation and change it to 1 just before shifting to STOP mode.
Also, be sure to change the AWC bit to 0 after returning from STOP mode to normal operation
If the AWC bit is left set to $1, A / D$ conversion will not start normally in spite of the subsequent SNOOZE mode or normal operation.

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

9. 20.2 Configuration of ELCL (Page 1035, Page 1037, Page 1039)

Incorrect:
(Page 1035)

Table 20-1 Connections in Logic Cell Block L1 (1)

Signal selection block n of event link L1	Input Signal	Destination of the signal to be output from signal selection block n of event link L1
Signal selection block 0 of event link L1 1 Note 1	- Signals selected by the ELISELO to ELISEL11 registers Use the ELL1SELO register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input) - Flip-flop 1 (input) Use the ELL1LNKO register to select one of the above destinations.
Signal selection block 1 of event link LiNote 1	- Signals selected by the ELISELO to ELISEL11 registers Use the ELL1SEL1 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input) - Flip-flop 1 (input) Use the ELL1LNK1 register to select one of the above destinations.
Signal selection block 2 of event link LiNote 1	- Signals selected by the ELISELO to ELISEL11 registers Use the ELL1SEL2 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input) - Flip-flop 1 (input) Use the ELL1LNK2 register to select one of the above destinations.
Signal selection block 3 of event link L1 ${ }^{\text {Note }} 1$	- Signals selected by the ELISELO to ELISEL11 registers Use the ELL1SEL3 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input) - Flip-flop 1 (input) Use the ELL1LNK3 register to select one of the above destinations.
Signal selection block 4 of event link L1 1 Note 2	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL1SEL4 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers	- Flip-flop 0 (set or reset) - Flip-flop 1 (set or reset) Use the ELL1LNK4 register to select a destination.
Signal selection block 5 of event link L1 1 Note 2	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL1SEL5 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Flip-flop 0 (set or reset) - Flip-flop 1 (set or reset) Use the ELL1LNK5 register to select a destination.
Signal selection block 6 of event link L1	- fclu (fcLK $\leq 16 \mathrm{MHz}$) Use the ELISEL6 to ELISEL11 registers and the ELL1SEL6 register to select faLk.	- Flip-flop 0 (clock) - Flip-flop 1 (clock) Use the ELL1LNK6 register to select a destination.

Correct:

Table 20-1 Connections in Logic Cell Block L1 (1)

Signal selection block n of event link L1	Input Signal	Destination of the signal to be output from signal selection block n of event link L1
Signal selection block 0 of event link L1 1 Note 1	- Signals selected by the ELISELO to ELISEL11 registers Use the ELL1SELO register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input) - Flip-flop 1 (input) Use the ELL1LNKO register to select one of the above destinations.
Signal selection block 1 of event link L1 1 Note 1	- Signals selected by the ELISELO to ELISEL11 registers Use the ELL1SEL1 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input) - Flip-flop 1 (input) Use the ELL1LNK1 register to select one of the above destinations.
Signal selection block 2 of event link L1 1 Note 1	- Signals selected by the ELISELO to ELISEL11 registers Use the ELL1SEL2 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input) - Flip-flop 1 (input) Use the ELL1LNK2 register to select one of the above destinations.
Signal selection block 3 of event link L1 ${ }^{\text {Note }} 1$	- Signals selected by the ELISELO to ELISEL11 registers Use the ELL1SEL3 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input) - Flip-flop 1 (input) Use the ELL1LNK3 register to select one of the above destinations.
Signal selection block 4 of event link L1 ${ }^{\text {Note } 2}$	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL1SEL4 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Flip-flop 0 (set or reset) - Flip-flop 1 (set or reset) Use the ELL1LNK4 register to select a destination.
Signal selection block 5 of event link L1 ${ }^{\text {Note }} 2$	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL1SEL5 register to select one signal to be input to logic cell block L1 from among the signals selectable by the above registers.	- Flip-flop 0 (set or reset) - Flip-flop 1 (set or reset) Use the ELL1LNK5 register to select a destination.
Signal selection block 6 of event link L1	. Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL1SEL6 register to select one signal to be input to logic cell block L 1 from among the signals selectable by the above registers.	- Flip-flop 0 (clock) - Flip-flop 1 (clock) Use the ELL1LNK6 register to select a destination.

Note 1. Select different destination of the signal to be output from signal selection blocks 0 to 6 of event link L1; do not connect two or more signals to a single destination.
Note 2. Do not connect a single signal to both the set and reset control of flip-flop 0 or 1 . Make sure that there is no period during which the signals for set and for reset are both high at the same time.
(Page 1037)

Table 20-3 Connections in Logic Cell Block L2 (1)

Signal selection block n of event link L2	Input Signal	Destination of the signal to be output from signal selection block n of event link L2
Signal selection block 0 of event link L2 ${ }^{\text {Notes }} \mathbf{1 , 2}$	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L1 Use the ELL2SELO register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL2LNK0 register to select one of the above destinations.
Signal selection block 1 of event link L2 ${ }^{\text {Notes }} \mathbf{1 , 2}$	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L1 Use the ELL2SEL1 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL2LNK1 register to select one of the above destinations.
Signal selection block 2 of event link L2 ${ }^{\text {Notes }} \mathbf{1 , 2}$	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L1 Use the ELL2SEL2 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL2LNK2 register to select one of the above destinations.
Signal selection block 3 of event link L2 ${ }^{\text {Notes }} \mathbf{1 , 2}$	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L1 Use the ELL2SEL3 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL2LNK3 register to select one of the above destinations.
Signal selection block 4 of event link L2 ${ }^{\text {Note } 2}$	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL2SEL4 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Flip-flop 1 (set) Use the ELL2LNK4 register to select one of the above destinations.
Signal selection block 5 of event link L2 ${ }^{\text {Note }} 2$	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL2SEL5 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Flip-flop 1 (reset) Use the ELL2LNK5 register to select one of the above destinations.
Signal selection block 6 of event link L2	- fCLK (fock $\leq 16 \mathrm{MHz}$) Use the ELISEL6 to ELISEL11 registers and the ELL2SEL6 register to select fabk.	- Flip-flop 0 (clock) - Flip-flop 1 (clock) Use the ELL2LNK6 register to select one of the above destinations.

Note 1. Select different destination of the signal to be output from signal selection blocks 0 to 6 of event link L2; do not connect two or more signals to a single destination.
Note 2. Do not connect a single signal to both the set and reset control of flip-flop 0 or 1 . Make sure that there is no period during which the signals for set and for reset are both high at the same time.

Table 20-3 Connections in Logic Cell Block L2 (1)

Signal selection block n of event link L2	Input Signal	Destination of the signal to be output from signal selection block n of event link L2
Signal selection block 0 of event link L2 ${ }^{\text {Notes }} \mathbf{1 , 2}$	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L1 Use the ELL2SELO register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL2LNKO register to select one of the above destinations.
Signal selection block 1 of event link L2 ${ }^{\text {Notes }} 1,2$	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L1 Use the ELL2SEL1 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL2LNK1 register to select one of the above destinations.
Signal selection block 2 of event link L2 ${ }^{\text {Notes }} \mathbf{1 , 2}$	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L1 Use the ELL2SEL2 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL2LNK2 register to select one of the above destinations.
Signal selection block 3 of event link L2 ${ }^{\text {Notes }} \mathbf{1 , 2}$	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L1 Use the ELL2SEL3 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL2LNK3 register to select one of the above destinations.
Signal selection block 4 of event link L2 ${ }^{\text {Note } 2}$	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL2SEL4 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Flip-flop 1 (set) Use the ELL2LNK4 register to select one of the above destinations.
Signal selection block 5 of event link L2 ${ }^{\text {Note }} 2$	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL2SEL5 register to select one signal to be input to logic cell block L2 from among the signals selectable by the above registers.	- Flip-flop 1 (reset) Use the ELL2LNK5 register to select one of the above destinations.
Signal selection block 6 of event link L2	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL2SEL6 register to select one signal to be input to logic cell block $L 2$ from among the signals selectable by the above registers.	- Flip-flop 0 (clock) - Flip-flop 1 (clock) Use the ELL2LNK6 register to select one of the above destinations.

Note 1. Select different destination of the signal to be output from signal selection blocks 0 to 6 of event link L2; do not connect two or more signals to a single destination.
Note 2. Do not connect a single signal to both the set and reset control of flip-flop 0 or 1 . Make sure that there is no period during which the signals for set and for reset are both high at the same time.
(Page 1039)

Table 20-5 Connections in Logic Cell Block L3 (1)

Signal selection block n of event link L3	Input Signal	Destination of the signal to be output from signal selection block n of event link L3
Signal selection block 0 of event link L3Notes 1, 2	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L2 Use the ELL3SELO register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL3LNKO register to select one of the above destinations.
Signal selection block 1 of event link L3Notes 1, 2	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L2 Use the ELL3SEL1 register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL3LNK1 register to select one of the above destinations.
Signal selection block 2 of event link L3Notes 1,2	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L2 Use the ELL3SEL2 register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL3LNK2 register to select one of the above destinations.
Signal selection block 3 of event link L3Notes 1, 2	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L2 Use the ELL3SEL3 register to select one signal to be input to logic cell block 3 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL3LNK3 register to select one of the above destinations.
Signal selection block 4 of event link L3Note 2	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL3SEL4 register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Flip-flop 1 (set) Use the ELL3LNK4 register to select one of the above destinations.
Signal selection block 5 of event link L3Note 2	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL3SEL5 register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Flip-flop 1 (reset) Use the ELL3LNK5 register to select one of the above destinations.
Signal selection block 6 of event link L3	- fccu (fcLK ≤ 16 MHz) Use the ELISEL 6 to ELISEL11 registers and the ELL 3 SEL6 register to select fcLK.	- Flip-flop 0 (clock) - Flip-flop 1 (clock) Use the ELL3LNK6 register to select one of the above destinations.

Note 1. Select different destination of the signal to be output from signal selection blocks 0 to 6 of event link L3; do not connect two or more signals to a single destination.
Note 2. Do not connect a single signal to both the set and reset control of flip-flop 0 or 1 . Make sure that there is no period during which the signals for set and for reset are both high at the same time.

Table 20-5 Connections in Logic Cell Block L3 (1)

Signal selection block n of event link L3	Input Signal	Destination of the signal to be output from signal selection block n of event link L3
Signal selection block 0 of event link L3Notes 1, 2	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L2 Use the ELL3SELO register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL3LNKO register to select one of the above destinations.
Signal selection block 1 of event link L3Notes 1,2	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L2 Use the ELL3SEL1 register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL3LNK1 register to select one of the above destinations.
Signal selection block 2 of event link L3Notes 1, 2	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L2 Use the ELL3SEL2 register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL3LNK2 register to select one of the above destinations.
Signal selection block 3 of event link L3Notes 1, 2	- Signals selected by the ELISELO to ELISEL11 registers - Signals 0 to 4 output from logic cell block L2 Use the ELL3SEL3 register to select one signal to be input to logic cell block 3 from among the signals selectable by the above registers.	- Logic cell 0 (input 0 or input 1) - Logic cell 1 (input 0 or input 1) - Selector (selection, input 0 or input 1) - Flip-flop 0 (input, set, or reset) - Flip-flop 1 (input) Use the ELL3LNK3 register to select one of the above destinations.
Signal selection block 4 of event link L3Note 2	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL3SEL4 register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Flip-flop 1 (set) Use the ELL3LNK4 register to select one of the above destinations.
Signal selection block 5 of event link L3Note 2	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL3SEL5 register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Flip-flop 1 (reset) Use the ELL3LNK5 register to select one of the above destinations.
Signal selection block 6 of event link L3	- Signals selected by the ELISEL6 to ELISEL11 registers Use the ELL3SEL6 register to select one signal to be input to logic cell block L3 from among the signals selectable by the above registers.	- Flip-flop 0 (clock) - Flip-flop 1 (clock) Use the ELL3LNK6 register to select one of the above destinations.

Note 1. Select different destination of the signal to be output from signal selection blocks 0 to 6 of event link L3; do not connect two or more signals to a single destination.
Note 2. Do not connect a single signal to both the set and reset control of flip-flop 0 or 1 . Make sure that there is no period during which the signals for set and for reset are both high at the same time.

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

10. 20.3.1 Input signal select registers n (ELISELn) ($n=0$ to 11) (Page 1042, Page 1046)

Incorrect:
(Page 1042)

Figure 20-5 Format of Input Signal Select Registers n (ELISELn) ($\mathrm{n}=0$ to 11) (1/3)
Address: \quad F0680H (ELISELO) to F068BH (ELISEL11)
After reset: OOH
RW: R/W

Symbol	7	6	5	4	3	2	1	0
ELISELn	0	0	0	ELISEL	ELISEL	ELISEL	ELISEL	$\begin{aligned} & \text { ELISEL } \\ & \text { nO } \end{aligned}$

Correct:

Figure 20-5 Format of Input Signal Select Registers n (ELISELn) ($\mathrm{n}=0$ to 11) (1/3)
Address: \quad F0680H (ELISELO) to F068BH (ELISEL11)
After reset: $\quad \mathrm{OOH}$
R/W: R/W

Caution Setting of bits 4 to 0 of the ELISEL6 register to 11010 B is prohibited.
(Page 1046)

Note 4. The interrupt sources that are selectable as event sources for INTC4 to INTC9 depend on which of the ELISELn ($\mathrm{n}=6$ to 11) registers is being set. Use the interrupt request signals as the hardware triggers for event-receiving peripheral functions.

Register	Event Source						
	INTC4	INTC5	INTC6	INTC7	INTC8	INTC9	
ELISEL6	INTPO	INTTM00	INTTM06	\|NTST2	 INTCSI20/ INTIIC20	INTSR1/ INTCSI11/ INTIIC11	INTSMSE
ELISEL7	INTP1	INTTM01	INTITL	INTSR2/ INTCSI21/ INTIIC21	INTSRE1	INTP10	
					INTTM03H	INTCMPO	
ELISEL8	INTP2	INTTM02	INTWDTI	INTSRE2	INTREMC	INTP11	
				INTTM11H		INTCMP1	
ELISEL9	INTP3	INTTM03	INTRTC	INTSTO/ INTCSIOO/ INTIICOO	INTSRO/ INTCSIO1/ INTIIC01	INTCTSUW R	
ELISEL10	INTP4	INTTM04	INTTM07	INTSREO	INTLVI	INTCTSUR D	
				INTTM01H			
ELISEL11	INTP5	INTTM05	INTIICAO	INTST1/ INTCSI10/ INTIIC10	INTAD	INTCTSUF N	

Note 4. The interrupt sources that are selectable as event sources for INTC4 to INTC9 depend on which of the ELISELn ($\mathrm{n}=6$ to 11) registers is being set. Use the interrupt request signals as the hardware triggers for event-receiving peripheral functions.

Register	Event Source						
	INTC4	INTC5	INTC6	INTC7	INTC8	INTC9	
ELISEL6	INTPO	INTTM00	INTTM06	\|NTST2	 INTCSI20/ INTIIC20	INTSR1/ INTCSI11/ INTIIC11	Setting prohibited
ELISEL7	INTP1	INTTM01	INTITL	INTSR2/ INTCSI21/ INTIIC21	INTSRE1	INTP10	
					INTTM03H	INTCMPO	
ELISEL8	INTP2	INTTM02	INTWDTI	INTSRE2	INTREMC	INTP11	
				INTTM11H		INTCMP1	
ELISEL9	INTP3	INTTM03	INTRTC	INTSTO/ INTCSIOO/ INTIICOO	INTSRO/ INTCSIO1/ INTIIC01	INTCTSUW R	
ELISEL10	INTP4	INTTM04	INTTM07	INTSREO	INTLVI	INTCTSUR D	
				INTTM01H			
ELISEL11	INTP5	INTTM05	INTIICAO	INTST1/ INTCSI10/ INTIIC10	INTAD	INTCTSUF N	

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

11. 20.6 Points for Caution when the ELCL is to be Used (Page 1081)

Incorrect:

4. The ELCL outputs signals with the use of multiple input signals, logic cell blocks, and output controllers. Note that dexiations in the timing between these elements may lead to the generation of glitches or expected outputs not being obtained. If an expected output not being obtained may create serious problems for a user system, stop attempting to use the ELCL or employ an external circuit as a workaround.

Date: Jan. 9, 2024

Correct:
4. The ELCL outputs signals with the use of multiple input signals, logic cell blocks, and output controllers. The logic cell blocks L1, L2, and L3 produce outputs with some delay with respect to inputs. The output signals from the flip-flops are delayed by up to one cycle of the clock selected for synchronization of clock signals by the signal selection blocks 6 of event links L1 to L3. Furthermore, deviations in the timing of input signals may lead to the generation of glitches or expected outputs not being obtained. If an expected output not being obtained may create serious problems for a user system, stop attempting to use the ELCL or employ an external circuit as a workaround.

12. 29.3.3 Sequencer instruction registers p (SMSIp) ($p=0$ to 31) (Page 1213, Page 1214)

Incorrect:
(Page 1213)

Table 29-1 Correspondences between the Memory Addresses of the SMSIp Registers and Values of the SMSCV0 to SMSCV4 Bits

SMSIP	Address	SMSCV[4:0]
SMSI15	FO39EH, F039FH	01111B
SMSI14	F039CH, F039DH	01110B
SMSI13	F039AH, F039BH	01101B
SMSI12	F0398H, F0399H	01100B
SMSI11	F0396H, F0397H	01011B
SMSI10	F0394H, F0395H	01010B
SMSI9	F0392H, F0393H	01001B
SMS18	F0390H, F0391H	01000B
SMSI7	F038EH, F038FH	00111B
SMSI6	F038CH, F038DH	00110B
SMSI5	F038AH, F038BH	00101B
SMSI4	F0388H, F0389H	00100B
SMSI3	F0386H, F0387H	00011B
SMSI2	F0384H, F0385H	00010B
SMSI1	F0382H, F0383H	00001B
SMSIO	F0380H, F0381H	00000B

SMSIp	Address	SMSCV[4:0]
SMSI31	F03BEH, F03BFH	11111 B
SMSI30	F03BCH, F03BDH	$11110 B$
SMSI29	F03BAH, F03BBH	11101 B
SMSI28	F03B8H, F03B9H	11100 B
SMSI27	F03B6H, F03B7H	11011 B
SMSI26	F03B4H, F03B5H	11010 B
SMSI25	F03B2H, F03B3H	11001 B
SMSI24	F03B0H, F03B1H	$11000 B$
SMSI23	F03AEH, F03AFH	10111 B
SMSI22	F03ACH, F03ADH	$10110 B$
SMSI21	F03AAH, F03ABH	10101 B
SMSI20	F03A8H, F03A9H	$10100 B$
SMSI19	F03A6H, F03A7H	10011 B
SMSI18	F03A4H, F03A5H	$10010 B$
SMSI17	F03A2H, F03A3H	10001 B
SMSI16	F03AOH, F03A1H	10000 B

Caution 1. Only set the SMSIp registers while the operation of the sequencer is stopped. Re-writing the SMSIp registers while the sequencer is handling the commands results in an undefined operation of the sequencer
Caution 2. No register follows the SMSI31 register once the processing it defines has finished. Therefore, set the SMSI31 register for processing for termination command or. interrupt plus termination command to stop processing by the sequencer or for branch processing so that the processing at the branch destination register is run

Correct:

Table 29-1 Correspondences between the Memory Addresses of the SMSIp Registers and Values of the SMSCV0 to SMSCV4 Bits

SMSIp	Address	SMSCV[4:0]
SMSI15	F039EH, F039FH	01111 B
SMSI14	F039CH, F039DH	01110 B
SMSI13	F039AH, F039BH	01101 B
SMSI12	F0398H, F0399H	01100 B
SMSI11	F0396H, F0397H	01011 B
SMSI10	F0394H, F0395H	01010 B
SMSI9	F0392H, F0393H	01001 B
SMSI8	F0390H, F0391H	01000 B
SMSI7	F038EH, F038FH	00111 B
SMSI6	F038CH, F038DH	00110 B
SMSI5	F038AH, F038BH	00101 B
SMSI4	F0388H, F0389H	00100 B
SMSI3	F0386H, F0387H	00011 B
SMSI2	F0384H, F0385H	00010 B
SMSI1	F0382H, F0383H	00001 B
SMSI0	F0380H, F0381H	00000 B

SMSIp	Address	SMSCV[4:0]
SMSI31	F03BEH, F03BFH	11111 B
SMSI30	F03BCH, FO3BDH	11110 B
SMSI29	F03BAH, F03BBH	11101 B
SMSI28	F03B8H, F03B9H	11100 B
SMSI27	F03B6H, F03B7H	11011 B
SMSI26	F03B4H, F03B5H	11010 B
SMSI25	F03B2H, F03B3H	11001 B
SMSI24	F03BOH, F03B1H	$11000 B$
SMSI23	F03AEH, F03AFH	10111 B
SMSI22	F03ACH, F03ADH	$10110 B$
SMSI21	F03AAH, F03ABH	$10101 B$
SMSI20	F03A8H, F03A9H	$10100 B$
SMSI19	F03A6H, F03A7H	10011 B
SMSI18	F03A4H, F03A5H	$10010 B$
SMSI17	F03A2H, F03A3H	$10001 B$
SMSI16	F03AOH, F03A1H	$10000 B$

Caution 1. Only set the SMSIp registers while the operation of the sequencer is stopped. Re-writing the SMSIp registers while the sequencer is handling the commands results in an undefined operation of the sequencer.
Caution 2. No register follows the SMSI31 register once the processing it defines has finished. If the command for terminating processing of commands or branch processing is not set in the SMSI31 register, the processing for termination is automatically executed once the processing defined in the SMSI31 register has finished.
(Page 1214)

Table 29-2 Types of Processing Specified by the SMSIp Registers

Name of Processing	OperationNote 4	Sequencer Code	$\underset{(4 \text { Bits) }}{\substack{\text { First } \\ \text { (} \\ \text { Serand }}}$	Second Operand (4 Bits)	$\begin{aligned} & \text { Additional } \\ & \text { Byte (4 Bits) } \end{aligned}$
8 -bit data transfer 1	[SMSG $n+$ Byte] \leftarrow SMSGm	0000	nth of SMSGn Note 1	mth of SMSGm ${ }^{\text {Note } 1}$	ByteNote 2
8 -bit data transfer 2	SMSGm $\leftarrow[$ SMSGn + Byte]	0001	$\begin{aligned} & \text { nth of SMSGn } \\ & \text { Note } 1 \end{aligned}$	mth of SMSGm ${ }^{\text {Note } 1}$	ByteNote 2
16-bit data transfer 1	[SMSGn + Byte] \leftarrow SMSGm	0010	$\begin{aligned} & \text { nth of SMSGn } \\ & \text { Note } 1 \end{aligned}$	mth of SMSGm ${ }^{\text {Note } 1}$	ByteNote 2
16-bit data transfer2	SMSGm \leftarrow [SMSGn + Byte]	0011	nth of SMSGn Note 1	mth of SMSGm ${ }^{\text {Note } 1}$	ByteNote 2
1 -bit data setting	[SMSGn + Byte], bit $\leftarrow 1$	0100	$\begin{gathered} \text { nth of SMSGn } \\ \text { Note } 1 \end{gathered}$	bitNote 2	ByteNote 2
1-bit data clearing	[SMSG + Byte], bit $\leftarrow 0$	0101	$\begin{gathered} \text { nth of SMSGn } \\ \text { Note } 1 \\ \hline \end{gathered}$	bitNote 2	ByteNote 2
1-bit data transfer	SCY $\leftarrow[5 M S G n+$ Byte] .bit	0110	$\begin{aligned} & \text { nth of SMSGn } \\ & \text { Note } 1 \end{aligned}$	bitiNote 2	ByteNote 2
Word addition	SMSGn, SCY ¢SMSGn + SMSGm	0111	$\begin{gathered} \text { nth of SMSGn } \\ \text { Note } 1 \end{gathered}$	mth of SMSGm ${ }^{\text {Note } 1}$	0000
Word subtraction	SMSGn, SCY ¢SMSGn - SMSGm	0111	$\begin{gathered} \text { nth of SMSGn } \\ \text { Note } 1 \end{gathered}$	mth of SMSGm ${ }^{\text {Note }} 1$	0001
Word comparison	SMSG - SMSGm	0111	$\underset{\substack{\text { nth of SMSG } \\ \text { Note } 1}}{\substack{\text { nen }}}$	mth of SMSGmNote 1	0010
Logical shift tight	$\begin{aligned} & \hline \text { SCY } \leftarrow \text { SMSGn.0, SMSGm. } 15 \leftarrow 0, \\ & \text { SMSGn.m-1 } \leftarrow \text { SMSGn.m } \end{aligned}$	0111	nth of SMSGn Note 1	0000	0011
Branch 1 (SCY = 1)	SMSS[4:0] \leftarrow SMSS[44:0] + jdisp8 if SCY =	1000	Saddr ${ }^{\text {Note }} 3$		0000
Branch 2 (SCY $=0$)	SMSS[4:0] \leftarrow SMSS $[4: 00]+$ jdisp8 if $\mathrm{SCY}=0$	1000	Saddr5Note 3		0001
Branch 3 (SZ = 1)	SMSS[4:0] $¢$ SMSS[4:0] + dispp if SZ $=1$	1000	Saddr5Note 3		0010
Branch 4 (SZ = 0)	SMSS[4:0] $¢$ SMSS[4:0] + dispp if SZ $=0$	1000	Saddr $5^{\text {Note }} 3$		0011
Wait	Holding processing pending for a certain period	1001	IM1		IM2
Conditional wait 1 (bit =1)	SMSS[4:0] \leftarrow SMSS[4:0] if $[$ SMSG $n+$ Byte $]$.bit $=1$	1010	nth of SMSG Note 1	Biinote 2	ByteNote 2
Conditional wait 2 (bit = 0)	$\begin{aligned} & \text { SMSS[4:0] } \mathrm{SMSS[4:0]} \\ & \text { if }[\text { SMSGn }+ \text { Byte }] . \text { bit }=0 \end{aligned}$	1011	nth of SMSG Note 1	Biinote 2	ByteNote 2
Termination	SMSS[4:0] $\leftarrow 0$, Stopping the sequencer	1111	0000	0000	0000
$\begin{aligned} & \text { Interrupt plus. } \\ & \text { termination } \end{aligned}$	SMSS[4:0] $\div 0$. Stopping the sequencer after issuing an interrupt	1111	0000	0000	0001
DTC activation	Output of a DTC activating source signal	1111	0000	0000	0010

Note 1. Specify values in the range from 0 to 15 (from 0000B to 1111B) for n and m.
Note 2. Specify values in the range from 0 to 7 (from 0000B to 0111B) for the bytes.
Note 3. This is an 8-bit displacement value. Specify a relative address in the ranges from -31 to -1 and 1 to 31 (00000001 B to 0001 1111B, 1111 1111B to 11100001 B).

Note 4. For details on the terms, see 29.5 Commands for Use in Processing by the Sequencer.

Table 29-2 Types of Processing Specified by the SMSIp Registers

Name of Processing	OperationNote 4	Sequencer	First Operand (4 Bits)	Second Operand (4 Bits)	$\begin{gathered} \text { Additional } \\ \text { Byte (4 Bits) } \end{gathered}$
8 -bit data transer 1	[SMSGn + Byte] \leftarrow SMSGm	0000	$\begin{gathered} \text { nth of SMSGG } \\ \text { Note } 1 \end{gathered}$	mth of SMSGm ${ }^{\text {Note }} 1$	ByteNote 2
8 -bit datat transer 2	SMSGm $\leftarrow[$ SMSGn + Byte]	0001	nth of SMSGn Note 1	mth of SMSGm ${ }^{\text {Note } 1}$	ByteNote 2
16-bit data transfer 1	[SMSGn + Byte] \leftarrow SMSGm	0010	nth of SMSGn Note 1	mth of SMSGm ${ }^{\text {Note } 1}$	ByteNote 2
16-bit data transfer2	SMSGm $\leftarrow[$ SMSGn + Byte]	0011	nth of SMSGn Note 1	mth of SMSGm ${ }^{\text {Note } 1}$	ByteNote 2
1 -bit data setting	[SMSGn + Byte]. bit <1	0100	nth of SMSGn Note 1	bitNote 2	ByteNote 2
1 -bit data clearing	[SMSGn + Byte]. bit $\leftarrow 0$	0101	nth of SMSGn Note 1	bitNote 2	ByteNote 2
1-bit data transfer	SCY ¢[SMSG $n+$ Byte] $]$ bit	0110	$\begin{aligned} & \text { nth of SMSGE } \\ & \text { Note } 1 \end{aligned}$	bititote 2	ByteNote 2
Word addition	SMSGn, SCY ¢ SMSGn + SMSGm	0111	$\begin{gathered} \text { nth of SMSGn } \\ \text { Note } 1 \end{gathered}$	mth of SMSGm ${ }^{\text {Note } 1}$	0000
Word subtraction	SMSGn, SCYヶSMSGn - SMSGm	0111	$\begin{aligned} & \text { nth of SMSGE } \\ & \text { Note } 1 \end{aligned}$	mth of SMSGm ${ }^{\text {Note } 1}$	0001
Word comparison	SMSG - SmsGm	0111	$\begin{gathered} \text { nth of SMSGn } \\ \text { Note } 1 \end{gathered}$	mth of SMSGm ${ }^{\text {Note }} 1$	0010
Logical shift tight	$\begin{aligned} & \text { SCY } \leftarrow \text { SMSGG.0, SMSGG. } 15 \leftarrow 0, \\ & \text { SMSGG.m }-1 \leftarrow \text { SMSG } n \text {. } \end{aligned}$	0111	$\begin{gathered} \text { nth of SMSGn } \\ \text { Note } 1 \end{gathered}$	0000	0011
Branch 1 (SCY = 1)	SMSS[4:0] \leftarrow SMSS[4:0] + jdisp8 if SCY =	1000	\$addr5Note 3		0000
Branch 2 (SCY = 0)	SMSS[4:0] - SMSS[4:0] + jdisp8 if SCY $=0$	1000	\$addr5Note 3		0001
Branch 3 ($\mathrm{SZ}=1$)	SMSS[4:0] \leftarrow SMSS[4:0] + jdisp8 if SZ $=1$	1000	\$addr5Note 3		0010
Branch 4(SZ = 0)	SMSS[4:0] \leftarrow SMSS[4:0] + jdisp8 if SZ $=0$	1000	\$addr5Note 3		0011
Wait	Holding processing pending for a certain period	1001	IM1		IM2
Conditional wait 1 (bit = 1)	SMSS[4:0] \leftarrow SMSS[4:0] if [SMSGn + Byte] .bit $=1$	1010	nth of SMSGn Note 1	BiiNote 2	ByteNote 2
$\begin{aligned} & \text { Conditional wait } 2 \\ & (\text { (bit }=0) \end{aligned}$	$\begin{aligned} & \text { SMSS[4:0]↔SMSS[4:0] } \\ & \text { if }[S M S G n+\text { Byte }] . \text { bit }=0 \end{aligned}$	1011	$\underbrace{\text { 1 }}_{\substack{\text { nth of SMSGG } \\ \text { Note }}}$	BiiNote 2	ByteNote 2
Termination	SMSS[4:0] $\leftarrow 0$, Stopping the sequencer	1111	0000	0000	0000
DTC activation	Output of a DTC activating source signal	1111	0000	0000	0010

Note 1. Specify values in the range from 0 to 15 (from 0000B to 1111B) for n and m
Note 2. Specify values in the range from 0 to 7 (from 0000B to 0111B) for the bytes
Note 3. This is an 8-bit displacement value. Specify a relative address in the ranges from -31 to -1 and to 31 (0000 0001B to 0001 1111B, 1111 1111B to 1110 0001B)
Note 4. For details on the terms, see 29.5 Commands for Use in Processing by the Sequencer.

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

13. 29.4 Operations of the SNOOZE Mode Sequencer (Page 1223)

Incorrect:

29.4.3 Sequencer flags

The sequencer has flags that are set or reset in response to the results of operations.
a) Sequencer zero flag (SZ)

The SZ flag is an internal flag of the sequencer. The flag is set to 1 when the result of addition, subtraction, or comparison is 0 . Otherwise, the flag is cleared to 0 . The flag is only for use in the internal processing by the sequencer. For details, see 29.5 Commands for Use in Processing by the Sequencer.
b) Sequencer carry flag (SCY)

The SCY flag reflects the state of addition or subtraction producing an overflow or underflow, the value of the shifted-out bit in logical shifting processing, or the result of 1 -bit data transfer. The flag is only for use in the internal processing by the sequencer. For details, see 29.5 Commands for Use in Processing by the Sequencer.

The values of the SZ and SCY flags of the sequencer can be read from the corresponding bits of the SMSS register. See 29.3.6 Sequencer status register (SMSS).

Correct:

29.4.3 Sequencer flags

The sequencer has flags that are set or reset in response to the results of operations.
a) Sequencer zero flag (SZ)

The SZ flag is an internal flag of the sequencer. The flag is set to 1 when the result of addition, subtraction, or comparison is 0 . Otherwise, the flag is cleared to 0 . The flag is only for use in the internal processing by the sequencer. For details, see 29.5 Commands for Use in Processing by the Sequencer.
b) Sequencer carry flag (SCY)

The SCY flag reflects the state of addition or subtraction producing an overflow or underflow, the value of the shifted-out bit in logical shifting processing, or the result of 1-bit data transfer. The flag is only for use in the internal processing by the sequencer. For details, see 29.5 Commands for Use in Processing by the Sequencer.

The values of the SZ and SCY flags of the sequencer can be read from the corresponding bits of the SMSS register. See 29.3.6 Sequencer status register (SMSS).

29.4.4 Interrupt from the SNOOZE Mode Sequencer

The SMSEMK bit controls generation of the INTSMSE interrupt from the SNOOZE mode sequencer. Before starting the SNOOZE mode sequencer operation (by setting SMSSTART to 1), use the CPU to set the SMSEMK and SMSEIF bits to 1 . The SMSEIF and SMSEMK bits are respectively set to 1 and 0 by setting the SMSEMK bit to 0 within the SNOOZE mode sequencer processing, which leads to generation of the INTSMSE interrupt. When the interrupt is disabled (DI), the SMSEMK bit being 0 indicates the end of the sequencer operation.

Caution 1. Do not use a CPU instruction to set the SMSEMK bit in the MKOH register or SMSEIF bit in the IFOH register to 0 while the setting of the SMSSTART bit in the SMSC register is 1 .
Caution 2. If processing by the SNOOZE mode sequencer and that for the INTSMSE interrupt involve access to the same area in the SFR or RAM, ensure that the two types of processing do not run at the same time.

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

14. 29.4.1 Internal operations of the SNOOZE mode sequencer (Page 1220)

Incorrect:
29.4.1 Internal operations of the SNOOZE mode sequencer

Sequencing by the SNOOZE mode sequencer starts in response to the activating trigger specified by the SMSTRGSELO to SMSTRGSEL4 bits of the SMSC register. Following activation, the sequencer handles the processing specified by the SMSIO register, and then handles the processing specified by the SMSIp register indicated by the SMSCV0 to SMSCV4 bits of the SMSS register. After execution of the processing for termination command or interrupt plus termination command, the sequencer has finished one round of processing and waits for another activating trigger. Moreover, setting the SMSSTOP bit of the SMSC register to 1 to generate a trigger for forcible termination leads to the sequencer being stopped. Figure 29-8 shows the flow of internal operations of the SNOOZE mode sequencer.

Figure 29-8 Flow of Internal Operations of the SNOOZE Mode Sequencer

Correct:

29.4.1 Internal operations of the SNOOZE mode sequencer

Sequencing by the SNOOZE mode sequencer starts in response to the activating trigger specified by the SMSTRGSELO to SMSTRGSEL4 bits of the SMSC register. Following activation, the sequencer handles the processing specified by the SMSIO register, and then handles the processing specified by the SMSIp register indicated by the SMSCV0 to SMSCV4 bits of the SMSS register. After execution of the processing for termination command, the sequencer has finished one round of processing and waits for another activating trigger. Moreover, setting the SMSSTOP bit of the SMSC register to 1 to generate a trigger for forcible termination leads to the sequencer being stopped. Figure 29-8 shows the flow of internal operations of the SNOOZE mode sequencer.

Figure 29-8 Flow of Internal Operations of the SNOOZE Mode Sequencer

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

15. 29.4.4 Procedures for running the SNOOZE mode sequencer (Page 1224)

Incorrect:
Figure 29-11 Flow of Activating and Running the SNOOZE Mode Sequencer

Note If processing by the sequencer ends following the processing for termination command or setting of the trigger bit for forcible termination (the SMSSTOP bit in the SMSC register), an INTSMSE interrupt will not be generated. If processing by the sequencer ends for the latter reason (setting of the trigger bit for forcible termination), the SMSC register itself will be initialized Therefore, to restart processing by the sequencer, make the initial settings of the SMSC register again (the SMSIp and SMSGn registers are not reset).

Correct:
Figure 29-11 Flow of Activating and Running the SNOOZE Mode Sequencer

Caution 1. If processing by the sequencer ends for the latter reason (setting of the trigger bit for forcible termination), the SMSC register itself will be initialized. Therefore, to restart processing by the sequencer, make the initial settings of the SMSC register again (the SMSIp and SMSGn registers are not reset).
Caution 2. Do not use a CPU instruction to set the SMSEMK bit in the MKOH register or SMSEIF bit in the IFOH register to 0 while the setting of the SMSSTART bit in the SMSC register is 1 .

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

16. 29.4.5 States of the SNOOZE mode sequencer (Page 1226)

Incorrect:

Sequencer operating state
The sequencer operating state is that in which the sequencer is operating and is handling processing specified by the SMSIp registers. Executing the termination or interrupt plus termination command places the sequencer in the activating trigger waiting state. If operation of the sequencer is forcibly terminated by setting the SMSSTOP bit of the SMSC register to 1 , the sequencer enters the sequencer stopped state.

Correct:

Sequencer operating state
The sequencer operating state is that in which the sequencer is operating and is handling processing specified by the SMSIp registers. Executing the termination command places the sequencer in the activating trigger waiting state. If operation of the sequencer is forcibly terminated by setting the SMSSTOP bit of the SMSC register to 1 , the sequencer enters the sequencer stopped state.

17. 29.5.20 Interrupt plus termination (Page 1248)

Incorrect:

29.5.20 Interrupt plus termination

The interrupt plus termination command issues an interrupt signal and then stops the SNOOZE mode sequencer. Issuing the interrupt signal enables starting the CPU when it has been placed on standby Specifically execution of the command issues the interrupt signale stops the SNOOZE mode sequencer, clears the SMSSTAT and SMSCV[4:0] bits in the SMSS register to 0_{4} and places the sequencer in the activating trigger waiting state Set the additional byte to 0001 B . Set all bits of the first and second operands to 0 .

Sequencer code: 1111B (additional byte: 0001B)
Number of clock cycles for processing: 1 cycle of ffLL
Flags: The states of the SZ and SCY flags are retained.
Equivalent CPU command: WAKEUP
Equivalent CPU operation: SMSS[4:0] \& 0 stopping the sequencer after issuing an interrupt

Symbol	15	14	13	12	11	10	2	8
SMSIR	1	1	1	1	0	Q	0	0
	7	6	5	4	3	2	1	0
	0	0	0	0	Q	0	Q	1

Example of a statement: 1111000000000001 B
The equivalent CPU command in this case is WAKEUP The interrupt plus termination command stops the sequencer after issuing an INTSMSE interrupt clears the SMSSTAT and SMSCV[4:0] bits of the SMSS register to 0 , and places the sequencer in the activating trigger waiting state.

Correct:

RENESAS TECHNICAL UPDATE TN-RL*-A0132A/E

18. 29.6 Operation in Standby Modes (Page 1250)

Incorrect:

29.6 Operation in Standby Modes

State	Operation of the SNOOZE Mode Sequencer
HALT mode	Operation continues. Note 1
STOP mode	The activating trigger for the SNOOZE mode sequencer can be accepted.Note 3
SNOOZE mode	Operation continues. Notes $2,4,5,6$

Note 1. When the subsystem clock is selected as fcLK, operation is disabled if the RTCLPC bit of the OSMC register is 1 .
Note 2. The SNOOZE mode can only be set when the high-speed on-chip oscillator clock or middlespeed on-chip oscillator clock is selected as fcLK.
Note 3. Detection of an SMS activating trigger in STOP mode places the chip in SNOOZE mode, making the SNOOZE mode sequencer capable of operation. The state of the chip returns to the STOP mode after the operations of the SMS are completed. Note that the sequencer does not have access to certain memory areas in SNOOZE mode. For details, see 29.4.2 Memory space allocated to the sequencer.
Note 4. When a transfer end interrupt from the CSIp in SNOOZE mode is being used as the activating trigger for the SNOOZE mode sequencer, use the interrupt plus termination command to release the chip from the SNOOZE mode and start processing by the CPU or make the settings for reception by the CSIp (writing 1 to the STm0 bit writing 0 to the SWCm bit setting the SSCm register, and writing 1 to the SSm0 bit) again before the processing for termination,
Note 5. When a transfer end interrupt from the UARTq in SNOOZE mode is being used as the activating trigger for the SNOOZE mode sequencer, use the interrupt plus termination command to release the chip from the SNOOZE mode and start processing by the CPU or make the settings for reception by the UARTa (writing 1 to the STm1 bit writing 0 to the SWCm bit setting the SSCm register, and writing 1 to the SSm1 bit) again before the processing for termination.
Note 6. When an A/D conversion end interrupt from the A/D converter in SNOOZE mode is being used as the activating trigger for the SNOOZE mode sequencer, use the interrupt plus termination command to release the chip from the SNOOZE mode and start processing by the CPU, or make the settings for the SNOOZE mode function of the A/D converter (writing 1 to the AWC bit after having written 0 to it) again before the processing for termination.

Correct:
29.6 Operation in Standby Modes

State	Operation of the SNOOZE Mode Sequencer
HALT mode	Operation continues. Note 1
STOP mode	The activating trigger for the SNOOZE mode sequencer can be accepted. Note 3
SNOOZE mode	Operation continues. Notes 2, 4, 5, 6

Note 1. When the subsystem clock is selected as fcLK, operation is disabled if the RTCLPC bit of the OSMC register is 1 .
Note 2. The SNOOZE mode can only be set when the high-speed on-chip oscillator clock or middlespeed on-chip oscillator clock is selected as fclk.
Note 3. Detection of an SMS activating trigger in STOP mode places the chip in SNOOZE mode, making the SNOOZE mode sequencer capable of operation. The state of the chip returns to the STOP mode after the operations of the SMS are completed. Note that the sequencer does not have access to certain memory areas in SNOOZE mode. For details, see 29.4.2 Memory space allocated to the sequencer.
Note 4. When a transfer end interrupt from CSIOO is being used as the activating trigger for the SNOOZE mode sequencer but the transfer end interrupt is disabled (CSIMK = 1), proceed with the following steps before the processing for termination of the SNOOZE mode sequencer. Write 0 to the SMSEMK bit in the MKOH register, and release the chip from the SNOOZE mode to start processing by the CPU, or make the settings for reception by CSIOO (writing 1 to the STOO bit, writing 0 to the SWCO bit, setting the SSC0 register, and writing 1 to the SSOO bit) again.
Note 5. When a transfer end interrupt from UARTO is being used as the activating trigger for the SNOOZE mode sequencer, but the transfer end interrupt is disabled (SRMKO $=1$), proceed with the following steps before the processing for termination of the SNOOZE mode sequencer. Write 0 to the SMSEMK bit in the MKOH register, and release the chip from the SNOOZE mode to start processing by the CPU, or make the settings for reception by UART0 (writing 1 to the ST01 bit, writing 0 to the SWCO bit, setting the SSC0 register, and writing 1 to the SSO1 bit) again.
Note 6. When an A/D conversion end interrupt from the A/D converter is being used as the activating trigger for the SNOOZE mode sequencer, but the A/D conversion end interrupt is disabled (ADMK = 1), proceed with the following steps before the processing for termination of the SNOOZE mode sequencer. Write 0 to the SMSEMK bit in the MKOH register, and release the chip from the SNOOZE mode to start processing by the CPU, or make the settings for the SNOOZE mode of the A/D converter (writing 1 to the AWC bit after having written 0 to it) again.

19. 37.4 AC Characteristics (Page 1431)

Incorrect:

Item	Symbol	Conditions			Min.	Typ.	Max.	Unit
Instruction cycle(minimum instructionexecution time)	TCY	Main system clock (fMAIN) operation	$\begin{aligned} & \begin{array}{l} \text { HS } \\ \text { (high-speed main) } \\ \text { mode } \end{array} \end{aligned}$	$1.8 \mathrm{~V} \leq \mathrm{VDO} \leq 5.5 \mathrm{~V}$	0.03125		1	нs
				$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}$	0.25		1	нs
			$\begin{aligned} & \text { LS } \\ & \begin{array}{l} \text { (low-speed main) } \\ \text { mode } \end{array} \end{aligned}$	$1.8 \mathrm{~V} \leq \mathrm{Vod} \leq 5.5 \mathrm{~V}$	0.04167		1	нs
				$1.6 \mathrm{~V} \leq \mathrm{VoD} \leq 1.8 \mathrm{~V}$	0.25		1	нs
			LP LPWW-power main) mode	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.5		1	нs
		Subsystem clock (fsub) operation		$1.6 \mathrm{~V} \leq \mathrm{VDO} \leq 5.5 \mathrm{~V}$	26.041	30.5	31.3	нs
		In the selfprogrammingmode	$\begin{aligned} & \text { HS } \\ & \text { (high-speed main) } \\ & \text { mode } \end{aligned}$	$1.8 \mathrm{~V} \leq \mathrm{VoD} \leq 5.5 \mathrm{~V}$	0.03125		1	нs
				$1.6 \mathrm{~V} \leq \mathrm{Vod} \leq 1.8 \mathrm{~V}$	0.5		1	нs
			$\begin{aligned} & \text { LS } \\ & \text { (low-speed main) } \\ & \text { mode } \end{aligned}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.04167		1	us
				$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}$	0.5		1	нs
External system clock frequency	fex	$1.8 \mathrm{~V} \leq \mathrm{VOD} \leq 5.5 \mathrm{~V}$			1.0		20.0	MHz
		$1.6 \mathrm{~V} \leq \mathrm{V}$ OD $<1.8 \mathrm{~V}$			1.0		4.0	MHz
	fexs				32		38.4	kHz
External system clock nput high-level width, low-level width	$\begin{gathered} \text { texx } \\ \text { tex } \end{gathered}$	$1.8 \mathrm{~V} \leq \mathrm{VOD} \leq 5.5 \mathrm{~V}$			15			ns
		$1.6 \mathrm{~V} \leq \mathrm{V}_{\text {OD }}<1.8 \mathrm{~V}$			120			ns
	texhs, tEXIS				13.7			нs

Correct:
$\left(\mathrm{TA}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}\right)$

Item	Symbol	Conditions			Min.	Typ.	Max.	Unit
Instruction cycle (minimum instruction execution time)	TCY	Main system clock (fMAIN) operation	HS (high-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	$\mu \mathrm{s}$
				$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
			```LS (low-speed main) mode```	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.04167		1	$\mu \mathrm{s}$
				$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
			$\begin{aligned} & \text { LP } \\ & \text { (low-power main) } \\ & \text { mode } \end{aligned}$	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.5		1	$\mu \mathrm{s}$
		Subsystem clock (fsub) operation		$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	26.041	30.5	31.3	$\mu \mathrm{s}$
		$\begin{aligned} & \text { In the self } \\ & \text { programming } \\ & \text { mode } \end{aligned}$	HS   (high-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	Hs
				$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}$	0.5		1	$\mu \mathrm{s}$
			LS   (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.04167		1	нs
				$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 1.8 \mathrm{~V}$	0.5		1	$\mu \mathrm{s}$
External system clock frequency	fex	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.0		20.0	MHz
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			1.0		4.0	MHz
	fexs				32		38.4	kHz
External system clock input high-level width, low-level width	$\left.\right\|_{\mathrm{tEXXL}} ^{\mathrm{tEX},}$	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			24			ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			120			ns
	tEXHS, \|tEXLS				13.7			$\mu \mathrm{s}$

