RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A0109A/E	Rev.	1.00	
Title	Correction for Incorrect Description Notice R Descriptions in the User's Manual: Hardware Changed	Information Category	Technical Notification			
		Lot No.				
Applicable Product	RL78/L12 Group	Reference Document	Rev 2.20			

This document describes misstatements found in the RL78/L12 User's Manual: Hardware Rev. 2.20 (R01UH0330EJ0220).

Corrections

Applicable Item	Applicable Page	Contents
7.3.4 Real-time clock control register 1 (RTCC1)	Page 284	Incorrect descriptions revised
Figure 7-21. Procedure for Reading Real-time Clock	Page 296	Incorrect descriptions revised
Figure 7-22. Procedure for Writing Real-time Clock	Page 297	Incorrect descriptions revised
30.3.2 Supply current characteristics	Page 858 to Page 861	Incorrect descriptions revised
31.3.2 Supply current characteristics	Page 916 to Page 919	Incorrect descriptions revised

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

		C	prrections and Applicable Iter	ms	Pages in this		
No.		Document No.	English	R01UH0330EJ0220	document for corrections		
1	7.3.4 R	eal-time clock control re	egister 1 (RTCC1)	Page 284	Page 3		
2	2 Figure 7-21. Procedure for Reading Real-time Clock			Page 296	Page 4		
3	Figure	7-22. Procedure for Wri	Page 297	Page 4			
4	30.3.2 \$	Supply current characte	ristics	Page 858 to Page 861	Page 5 to Page 7		
5	31.3.2 \$	Supply current characte	ristics	Page 916 to Page 919	Page 8 to Page 10		

Incorrect: Bold with underline: Correct: Gray hatched

Revision History

RL78/L12 Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A0109A/E	Jan. 19, 2023	First edition issued
		Corrections No.1 to No.5 revised (this document)

1. 7.3.4 Real-time clock control register 1 (RTCC1) (p.284)

Incorrect:

Figure 7-5. Format of Real-time Clock Control Register 1 (RTCC1) (2/2)

RIFG	Constant-period interrupt status flag							
0	Constant-period interrupt is not generated.							
1	Constant-period interrupt is generated.							
generated, i	icates the status of generation of the constant-period interrupt. When the constant-period interrupt is t is set to "1". Jeared when "0" is written to it. Writing "1" to it is invalid.							
RWST	Wait status flag of real-time clock							
0	Counter is operating							

RWST	Wait status flag of real-time clock
0	Counter is operating.
1	Mode to read or write counter value
This status fla	ag indicates whether the setting of the RWAIT bit is valid.
Before readin	g or writing the counter value, confirm that the value of this flag is 1.

RWAIT	Wait control of real-time clock
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value
Be sure to wr As the counte When RWAIT	ols the operation of the counter. ite "1" to it to read or write the counter value. er (16-bit) is continuing to run, complete reading or writing within one second and turn back to 0. Γ = 1, it takes up to 1 clock (fπτc) until the counter value can be read or written (RWST = 1). ^{Notes 1, 2} unter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts

However, when it wrote a value to second count register, it will not keep the overflow event.

Correct:

Figure 7-5. Format of Real-time Clock Control Register 1 (RTCC1) (2/2)

RIFG	Constant-period interrupt status flag					
0	Constant-period interrupt is not generated.					
1	Constant-period interrupt is generated.					
This flag indi	This flag indicates the status of generation of the constant-period interrupt. When the constant-period interrupt is					

generated, it is set to "1". This flag is cleared when "0" is written to it. Writing "1" to it is invalid.

RWST	Wait status flag of real-time clock
0	Counter is operating.
1	Mode to read or write counter value
This status fla	ag indicates whether the setting of the RWAIT bit is valid.

Before reading or writing the counter value, confirm that the value of this flag is 1.

RWAIT	Wait control of real-time clock
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value
This bit cont	rols the operation of the counter.
Be sure to w	rite "1" to it to read or write the counter value.
As the count	er (16-bit) is continuing to run, complete reading or writing within one second and turn back to 0.
When readir	g or writing to the counter is required while generation of the alarm interrupt is enabled, first set the
CT2 to CT0	bits to 010B (generating the constant-period interrupt once per 1 second).
Then, compl	ete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next
constant-per	iod interrupt.
When RWA	T = 1, it takes up to 1 clock (fRTC) until the counter value can be read or written (RWST = 1). Notes 1, 2
When the co	unter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT = 0, then counts
up.	
However, wh	nen it wrote a value to second count register, it will not keep the overflow event.

2. Figure 7-21. Procedure for Reading Real-time Clock (p.296)

Incorrect:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

- Caution Complete the series of process of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.
- Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be read in any sequence.
 - All the registers do not have to read and only some registers may be read.

3. Figure 7-22. Procedure for Writing Real-time Clock (p.297)

Incorrect:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

- Cautions 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second.
 - 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counter operates (RTCE = 1), rewrite the values of the MIN register after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
- Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be written in any sequence.
 - All the registers do not have to be set and only some registers may be written.

Date: Jan. 19, 2023

Correct:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

Caution Complete the series of process of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0 within 1 second. When reading to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.

Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be read in any sequence.

All the registers do not have to read and only some registers may be read.

Correct:

Note Be sure to confirm that RWST = 0 before setting STOP mode.

Cautions 1. Complete the series of operations of setting the RWAIT bit to 1 to clearing the RWAIT bit to 0

- within 1 second. When writing to the counter is required while generation of the alarm interrupt is enabled, first set the CT2 to CT0 bits to 010B (generating the constant-period interrupt once per 1 second). Then, complete the processing from setting the RWAIT bit to 1 to setting it to 0 before generation of the next constant-period interrupt.
- 2. When changing the values of the SEC, MIN, HOUR, WEEK, DAY, MONTH, and YEAR register while the counter operates (RTCE = 1), rewrite the values of the MIN register after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, clear the WAFG, RIFG and RTCIF flags after rewriting the MIN register.
- Remark The second count register (SEC), minute count register (MIN), hour count register (HOUR), week count register (WEEK), day count register (DAY), month count register (MONTH), and year count register (YEAR) may be written in any sequence.
 - All the registers do not have to be set and only some registers may be written.

4. 30.3.2 Supply current characteristics (p.858 to p.861)

Incorrect:

30.3.2 Supply current characteristics

(TA = -40	to +85°	C, 1.6 V	$\leq EV$ DD = VC	$DD \leq 5.5 V, Vss = E$	Vss = 0	V)				(1/3)
Parameter	Symbol		Conditions						MAX.	Unit
		HS (high-	file = 24 MHz ^{Note 3}	Basic V _{DD} = 5.0 V		1.5		mA		
current		mode	speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		1.5		mA
Note 1			mode	-	Normal	V _{DD} = 5.0 V		3.3	5.0	mA
					operation	V _{DD} = 3.0 V		3.3	5.0	mA
				fsue = 32.768 kHz ^{Note4}	Normal	Square wave input		4.1	7.7	μA
				T _A = +85°C	operation	Resonator connection		4.2	7.8	μA

Notes 1. Total current flowing into VoD and EVDD, including the input leakage current flowing when the level of the input

pin is fixed to VDD, EVDD or Vss, EVss. The values below the MAX.column include the peripheral. operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O. port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- 3. When high-speed system clock and subsystem clock are stopped.
- 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval. timer, watchdog timer, and LCD controller/driver.
- Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz

2.4 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 16 MHz

- LS (low-speed main) mode: 1.8 V ≤ VDD ≤ 5.5 V@1 MHz to 8 MHz
- LV (low-voltage main) mode: 1.6 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 4 MHz
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency

3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Date: Jan. 19, 2023

Correct:

30.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions						MAX.	Unit
Supply IDD1 current Note 1	IDD1	Operating	HS (high-	f⊪ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
		mode	speed main)	operation V_{DD} = 3.0 V NodeNote5 Normal V_{DD} = 5.0 V operation V_{DD} = 3.0 V		1.5		mA		
			mode			V _{DD} = 5.0 V		3.3	5.0	mA
						V _{DD} = 3.0 V		3.3	5.0	mA
				fsue = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.1	7.7	μA
				T _A = +85°C	operation	Resonator connection		4.2	7.8	μA

Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

- The currents in the "TYP." column do not include the operating currents of the peripheral modules.
- The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- 3. When high-speed system clock and subsystem clock are stopped.
- When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 24 MHz

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $1.8 V \le V_{DD} \le 5.5 V@1 MHz$ to 8 MHz

LV (low-voltage main) mode: 1.6 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 4 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- 2. fin: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(1/3)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(2/3)

· ·					-				•
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	Note 2 IDD2	HALT	HS (high-	fill = 24 MHz Note 4	V _{DD} = 5.0 V		0.44	1.28	mA
current Note 1		mode	speed main) mode Note Z		V _{DD} = 3.0 V		0.44	1.28	mA
			mode	fili = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	fiH = 8 MHz Note 4	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Notez}		V _{DD} = 2.0 V		260	530	μA
			LV (low-	fill = 4 MHz Note 4	V _{DD} = 3.0 V		420	640	μA
	main) Note.7		V _{DD} = 2.0 V		420	640	μA		
			speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
			mode.NoteZ	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
	speed	LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA	
		speed main)	V _{DD} = 3.0 V	Resonator connection		145	380	μA	
m	mode	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA		
				V _{DD} = 2.0 V	Resonator connection		145	380	μA

	Note.6	STOP	$T_A = -40^{\circ}C$	0.17	0.50	μA
		mode Note 8	T _A = +25°C	0.23	0.50	μA
			T _A = +50°C	0.32	1.10	μA
			T _A = +70°C	0.43	1.90	μA
			T _A = +85°C	0.71	3.30	μA

Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input

pin is fixed to VDD, EVDD or Vss, EVss. The values below the MAX. column include the peripheral

operation current, However, not including the current flowing into the A/D converter, LVD circuit, I/O.

port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

2. During HALT instruction execution by flash memory.

3. When high-speed on-chip oscillator and subsystem clock are stopped.

4. When high-speed system clock and subsystem clock are stopped.

5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included...
 However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD controller/driver.

6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.

Date: Jan. 19, 2023

(T _A = –40 t	o +85°C	s, 1.6 V ≤ l	EVdd = Vdd	≤ 5.5 V, Vss = EV	/ss = 0 V)				(2/3
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	Note 2 IDD2	HALT	HS (high-	fiH = 24 MHz Note 4	V _{DD} = 5.0 V		0.44	1.28	mA
current Note 1		mode	speed main) mode ^{Note 6}		V _{DD} = 3.0 V		0.44	1.28	mA
			mode	fiH = 16 MHz Note 4	V _{DD} = 5.0 V		0.40	1.00	mA
					V _{DD} = 3.0 V		0.40	1.00	mA
			LS (low-	fiH = 8 MHz Note 4	V _{DD} = 3.0 V		260	530	μA
			speed main) mode ^{Note 6}		V _{DD} = 2.0 V		260	530	μA
			LV (low-	fiH = 4 MHz Note 4	V _{DD} = 3.0 V		420	640	μA
	voltage main) mode Notes HS (high- speed main) mode Notes	main) mode		V _{DD} = 2.0 V		420	640	μA	
		HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA	
			V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA	
		f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA		
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
			LS (low-	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
			speed main) mode ^{Note 6}	V _{DD} = 3.0 V	Resonator connection		145	380	μA
	mode	mode,	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA	
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
	les.	STOP	T _A = -40°C				0.17	0.50	
	IDD3	mode Note 7	$T_A = -40^{\circ}C$ $T_A = +25^{\circ}C$				0.17	0.50	μA

IDD3	STOP	$T_A = -40^{\circ}C$	0.17	0.50	μA
	mode Note 7	T _A = +25°C	0.23	0.50	μA
		T _A = +50°C	0.32	1.10	μA
		T _A = +70°C	0.43	1.90	μA
		T _A = +85°C	0.71	3.30	μA

Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss. The following points apply in the HS (high-speed main), LS (low-speed main), and LV (low-voltage main) modes.

• The currents in the "TYP." column do not include the operating currents of the peripheral modules.

• The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and

those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the

operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

2. During HALT instruction execution by flash memory.

3. When high-speed on-chip oscillator and subsystem clock are stopped.

 χ_{s} Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_{DD} \leq 5.5 V@1 MHz to 24 MHz

2.4 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: 1.8 V ≤ VDD ≤ 5.5 V@1 MHz to 8 MHz

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

§, Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. file: High-speed on-chip oscillator clock frequency

3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Date: Jan. 19, 2023

4. When high-speed system clock and subsystem clock are stopped.

 When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).

6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 HS (high-speed main) mode: 2.7 V ≤ VDD ≤ 5.5 V@1 MHz to 24 MHz

 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz

LS (low-speed main) mode: 1.8 V ≤ V_{DD} ≤ 5.5 V@1 MHz to 8 MHz

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz

7. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

2. file: High-speed on-chip oscillator clock frequency

3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

5. 31.3.2 Supply current characteristics (p.916 to p.919)

Incorrect:

31.3.2 Supply current characteristics

TA = -40 1	$T_{A} = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V} $ (1)											
Parameter	Symbol		Conditions						MAX.	Unit		
Supply	IDD1	D1 Operating mode	ng HS (high- speed main) mode Note 5	f _{IH} = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA		
Note 1					operation	V _{DD} = 3.0 V		1.5		mA		
					Normal	V _{DD} = 5.0 V		3.3	5.3	mA		
					operation	V _{DD} = 3.0 V		3.3	5.3	mA		

		fsuв = 32.768 kHz	Normal	Square wave input	4.1	7.7	μA
		Note 4	operation	Resonator connection	4.2	7.8	μA
		T _A = +85°C					-
		fsue = 32.768 kHz	Normal	Square wave input	6.4	19.7	μA
		Note 4	operation	Resonator connection	6.5	19.8	μA
		T _A = +105°C					

Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss. The values below the MAX. column include the peripheral.

operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O. port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

2. When high-speed on-chip oscillator and subsystem clock are stopped.

3. When high-speed system clock and subsystem clock are stopped.

4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval, timer, watchdog timer, and LCD controller/driver.

5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V @1 MHz to 24 MHz
2.4 V ≤ V_{DD} ≤ 5.5 V @1 MHz to 16 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

2. fin: High-speed on-chip oscillator clock frequency

3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)

4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Correct:

31.3.2 Supply current characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions						MAX.	Unit
Supply	IDD1	Operating	()	fili = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current		mode	speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		1.5		mA
Note 1			mode		Normal	V _{DD} = 5.0 V		3.3	5.3	mA
					operation	V _{DD} = 3.0 V		3.3	5.3	mA

	fsue = 32.768 kHz	Normal	Square wave input	4.1	7.7	μA
	Note 4	operation	Resonator connection	4.2	7.8	μA
	T _A = +85°C				-	
	fsue = 32.768 kHz	Normal	Square wave input	6.4	19.7	μA
	Note 4	operation	Resonator connection	6.5	19.8	μA
	T _A = +105°C					-

Notes 1. Total current flowing into Vop and EVop, including the input leakage current flowing when the level of the input pin is fixed to Vop, EVop or Vss, EVss. The following points apply in the HS (high-speed main) mode.
The currents in the "TYP." column do not include the operating currents of the peripheral modules.
The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.
In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the

operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

- 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- 3. When high-speed system clock and subsystem clock are stopped.
- When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation).
- 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V @1 MHz to 24 MHz

 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(1/3)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-	f _{IH} = 24 MHz Note 4	V _{DD} = 5.0 V		0.44	2.3	mA
current Note 1	Note 2	mode	speed main) mode ^{Note Z}		V _{DD} = 3.0 V		0.44	2.3	mA
Note I				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.7	mA
					V _{DD} = 3.0 V		0.40	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	mA
			speed main) mode Note.z V	V _{DD} = 5.0 V	Resonator connection		0.45	2.0	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	2.0	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	1.10	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA

IDD3 Note 6	STOP	$T_A = -40^{\circ}C$	0.17	0.50	μA
	mode ^{Note.8}	T _A = +25°C	0.23	0.50	μA
		$T_A = +50^{\circ}C$	0.32	1.10	μA
		T _A = +70°C	0.43	1.90	μA
		T _A = +85°C	0.71	3.30	μA
		T _A = +105°C	2.90	15.30	μA

Notes 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD, circuit, I/O.

port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- 4. When high-speed system clock and subsystem clock are stopped.

 When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included... However, not including the current flowing into the 12-bit interval timer, watchdog timer, and LCD. controller/driver.

6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.

 $\chi_{\rm s}$ Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V \leq V_DD \leq 5.5 V @1 MHz to 24 MHz

2.4 V ≤ V_{DD} ≤ 5.5 V @1 MHz to 16 MHz

8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.

Date: Jan. 19, 2023

(2/3)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Falametei	Symbol			-	1	IVIIIN.	TIF.	IVIAA.	Unin
Supply	IDD2	HALT	HS (high-	fin = 24 MHz Note 4	V _{DD} = 5.0 V		0.44	2.3	mA
current Note 1	Note 2	mode	speed main) mode ^{Note 6}		V _{DD} = 3.0 V		0.44	2.3	mA
				f⊪ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.7	mA
					V _{DD} = 3.0 V		0.40	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	m/
			speed main) mode ^{Note 6}	V _{DD} = 5.0 V	Resonator connection		0.45	2.0	m/
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	m/
				V _{DD} = 3.0 V	Resonator connection		0.45	2.0	m/
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	m/
				V _{DD} = 5.0 V	Resonator connection		0.26	1.10	m/
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	m/
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	m/
		1							
	Пооз	STOP	T _A = -40°C				0.17	0.50	μŀ
		mode ^{Note 7}	T _A = +25°C				0.23	0.50	μŀ
			T _A = +50°C				0.32	1.10	μŀ
			T _A = +70°C	T _A = +70°C			0.43	1.90	μŀ
			T _A = +85°C				0.71	3.30	μŀ
			T _A = +105°C				2.90	15.30	μA

Notes 1. Total current flowing into Vbb and EVDD, including the input leakage current flowing when the level of the input pin is fixed to Vbb, EVbb or Vss, EVss. The following points apply in the HS (high-speed main) mode.

• The currents in the "TYP." column do not include the operating currents of the peripheral modules.

• The currents in the "MAX." column include the operating currents of the peripheral modules, except for those flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors, and those flowing while the data flash memory is being rewritten.

In the subsystem clock operation, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules. However, in HALT mode, including the current flowing into the RTC.

In the STOP mode, the currents in both the "TYP." and "MAX." columns do not include the operating currents of the peripheral modules.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- 4. When high-speed system clock and subsystem clock are stopped.
- When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1).
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 5.5 V @1 MHz to 24 MHz

 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 16 MHz

Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock

frequency)

- 2. fin: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Date: Jan. 19, 2023

7. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

