

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

date: 2003/01/21

1/1

HITACHI SEMICONDUCTOR TECHNICAL UPDATE

Classification
of Production Development Environment No TN-CSX-047A/E

THEME
H8S,H8/300 Series C/C++ compiler
Package Updates

Classification of
Information

1. Spec change
2. Supplement of

Documents
3. Limitation of Use

4. Change of Mask
5. Change of Production Line

Lot No. Rev. Effective Date

PRODUCT
NAME

PS008CAS5-MWR
PS008CAS4-MWR
PS008CAS4-SLR
PS008CAS4-H7R

All

Reference
Documents

H8S, H8/300 Series
C/C++ Compiler Assembler
Optimizing Linkage Editor

ADE-702-247 Rev. 1.0 1 Eternity

H8S,H8/300 series C/C++ compiler Package is updated to Ver.5.0.03 for Windows® and Ver.4.0.07 for UNIX.

Refer to the attached document, PS008CAS5-030115E, for details.

A user who has the following product should be informed.

For Windows® : H8S,H8/300 series C/C++ compiler PackageVer.5.0, Ver. 5.0.01 or

Ver.5.0.02 of PS008CAS5-MWR.

H8S,H8/300 series C/C++ compiler Package Ver.4.0, Ver.4.0r1, Ver.4.0A, Ver.4.0Ar1 or

Ver.4.0Ar2 of PS008CAS4-MWR.

For SPARC® : H8S,H8/300 series C/C++ compiler Package Ver.4.0, Ver.4.0A, Ver.4.0Ar1, Ver.4.0B,

Ver.4.0.05 or Ver.4.0.06 of PS008CAS4-SLR.

For HP9000 : H8S,H8/300 series C/C++ compiler Package Ver4.0, Ver.4.0A, Ver.4.0Ar1, Ver.4.0B,

Ver.4.0Br1, Ver.4.0.05 or Ver.4.0.06 of PS008CAS4-H7R.

Attached:

“Updates in H8S,H8/300 Series C/C++ compiler Package Ver.5.0.03 for Windows® and Ver.4.0.07 for UNIX”

 (PS008CAS5-030115E) , 4 pages

1/4

 PS008CAS5-030115E
Updates in H8S,H8/300 Series C/C++ compiler Package Ver. 5.0.03 for Windows® and 4.0.07 for UNIX

1. Hitachi Embedded Workshop 2 (updates only in Windows® Ver. 5.0.03 package)

1.1 Supporting Drag&Drop operation to add the variable to Watch Window
 When you add a variable to Watch window, you drag the variable on Editor and
 drop it on Watch window.

1.2 Supporting an Out-of-process Server for HEW
 Hew server is supported. It is based on COM technology and Out-of-process server.
 See the additional document about it.

1.3 Adding and Modifying the Data Generated by the Project Generator
 Project generation of the following CPU has been newly added:
 H8S/2168F, H8S/2367F, H8S/2375R, H8S/2377R, H8S/2628F
 The I/O definition file (iodefine.h) of the following CPU has been modified:
 H8S/2148, H8S/2612, H8S/2678

2. Compiler (Ver. 4.0.03 -> Ver. 4.0.04)

2.1 Correction of incorrect code related to a unary minus operator

Fixed is the following problem. The evaluation of a unary minus operator might be wrong if the unary minus
operator is applied after the sign extension by the type conversion from a char, short or int type variable,
including an implicit type conversion.

[The example of the bug #1]
 [The source program]
 char c:
 short s;
 int i;
 long l;
 void sub()
 {
 s = –c; /* when c=–128, s=–128 (s=128 is correct) */
 i = –c; /* when c=–128, i=–128 (i=128 is correct) */
 l = – (long)c; /* when c=–128, s=–128 (s=128 is correct) */
 l = – (long)s; /* when s=–32768, l=–32768 (l=32768is correct) */
 l = –(long)i; /* when i=–32768, l=–32768 (l=32768is correct) */
 }
 [The incorrect code] s=–c in the above source program is incorrectly compiled as follows.

MOV.B @_c,R0L
NEG.B R0L
EXTS.W R0
MOV.W R0,@_s

 [The correct code] s=–c in the above source program should be compiled as follows
MOV.B @_c,R0L
EXTS.W R0
NEG.W R0
MOV.W R0,@_s

[The example of the bug #2]
char c;
int i1,i2;

i1 = –c + i2; /* when c=–128, -c would be –128 (-c is actually 128) */
[The example of the bug #3]

char c;
int func();

2/4

int func()
{

return(–c); /* when c=–128, -c would be –128 (-c is actually 128) */
}

2.2. Correction of incorrect generation of an AND instruction

Fixed is the following problem. An AND instruction might be incorrectly generated depending on the
environment of the compiler (see the [Remark] below) if a bit-wise AND operator is applied after a shift
operator or if the same compound assignment operators of &=, |= or ^= is applied to the same variable in
succession.

[The example of the bug #1]
 [The source program]

unsigned int X, Y;
void sub(void)
{

X = (Y >> 14) & 0x2 ;
}

 [The incorrect code]
MOV.W @_Y,R0
ROTL.W #H'2,R0
AND.L #H'20002,ER0 ; Incorrect code
MOV.W R0,@_X

 [The correct code]
MOV.W @_Y,R0
ROTL.W #H'2,R0
AND.W #H'2,ER0 ; Correct code
MOV.W R0,@_X

[The example of the bug #2]
 [The source program]

sub(int Y)
{

Y &= 0x3;
Y &= 0x2;
return Y ;

}
 [The incorrect code]

AND.L #H'20002,ER0 ; Incorrect code
 [The correct code] s=-c in the above source program should be compiled as follows.

AND.W #H'2,R0 ; Correct code
[Remark]

 The occurrence of the bug depends on the contents of the host computer’s memory area freed by the
compiler. Even with the same source program and the same options are specified, the bug may or may not
occur depending on the environment (or host operating system) of the compiler.

2.3. Activation of the loop invariant code motion

Fixed is the following problem. The optimization of the loop invariant code motion may not work depending on
the environment of the compiler (see the [Remark] below).

[The example of the bug #1]
 [The source program]

for (... ; ... ; ...){
for (... ; ... ; ...)
 X = 0;

 }
 A loop like this is compiled as follows.
 [The code that the optimization does not work]

…
BRA L1 ; (A)

3/4

 L2:
 …
 BRA L3
 L4:
 …
 SUB.W E0,E0 ; (X)
 MOV.W E0,@_X
 L3:
 …

Bcc L4
 L1:

…
Bcc L2 ; (B)

 If the register E0 at (X) above is not used at any other point between (A) and (B), the code of (X)
 can be moved to the loop entrance as shown below.
 [The code the optimization has worked]

…
SUB.W E0,E0 ;<----------+ code motion
BRA L1 ; (A) |

 L2: |
 … |
 BRA L3 |
 L4: |
 … |
 ; (X)-------+
 MOV.W E0,@_X
 L3:
 …

Bcc L4
 L1:

…
Bcc L2 ; (B)

 This optimization, or code motion, makes the loop execution faster. But the bug may prevent the code
 motion from working even though the conditions for the code motion to work is satisfied.

[Remark]
 The occurrence of the bug depends on the contents of the host computer’s memory area freed by the

compiler. Even with the same source program and the same options are specified, the bug may or may
not occur depending on the environment (or host operating system) of the compiler.

2.4. Correction of incorrect branch code

Fixed is the following problem. A conditional branch after a comparison may be incorrectly taken or incorrectly
not taken if one operand of the comparison has caused an overflow in its operation (Case #1). Furthermore,
the same symptom occurs if that overflow is the result of an optimization to perform an operation in the smaller
size (e.g. int type operation is performed in char type operation) triggered by a type-conversion (Case #2).

[The example of the bug – Case #1]
 [The source program]
 int i1=1;
 int i2=–32767;

if ((i1 – i2) < 0)
printf("OK\n");

else
printf("NG\n");

 The result of (i1 – i2) should be –32768 according to the implementation-defined behavior of the compiler
and “OK” should be printed. But the bug prints “NG”.

 [The incorrect code]
MOV.W @_i1,R0
MOV.W @_i2,R1
SUB.W R1,R0

4/4

BGE Ln
 [The correct code]

MOV.W @_i1,R0
MOV.W @_i2,R1
SUB.W R1,R0
MOV.W R0,R0 ; This instruction is mistakenly deleted in the incorrect code above
BGE Ln

The V (overflow) flag of the CCR affects the BGE instruction. The BGE instruction above is used assuming
that MOV.W R0,R0 above always clears the V flag. But SUB.W R1,R0 above can change the V flag. Deleting
MOV.W R0,R0 does not guarantee that the V flag is always cleared when the BGE instruction is executed.

 [The example of the bug – Case #2]
 [The source program]
 int c1=1;
 int c2=–127;

if ((char) (c1 – c2) < 0)
printf("OK\n");

else
printf("NG\n");

The result of (c1 – c2) should be –128 and “OK” should be printed. But the bug prints “NG”. According to the
ANSI standard, (c1 – c2) should be an int-type operation and then no overflow occurs. But the optimization to
perform the operation in the smaller size (i.e., char) can cause an overflow.

3. Optimizing linkage editor (Ver.7.1.06 -> Ver.7.1.07)

3.1 Internal error fixed
 Fixed is the following internal error:
 Internal error(8705) that occurs when optimization of a branch instruction has been specified
 against an assembler object file

3.2 Illegal operation with form={binary | stype | hexadecimal} option specified
 Fixed is the following problem. An error message does not appear even though no output file is
 created in generating the binary/stype/hexadecimal format file if the directory specified
 in the output option does not exist.

3.3 Incorrect object code by optimization of deleting unused symbols
 Fixed is the following problem. Elements in the two arrays may be incorrect due to the
 optimization when all of the following conditions satisfied:
 (1) An array(say A_arr[]) to be accessed exists.
 (2) An array(say B_arr[]) or variable to be deleted by optimization exists.
 (3) A_arr and B_arr are in different sections. The sections for the two arrays are assumed
 to be A and B, respectively.
 (4) The start option allocates the sections A and B in a way that the addresses of these
 sections overlap .
 (5) The optimization of deleting unused symbols is enabled.

3.4 Incorrect error at linkage of C++ object codes
 Fixed is the problem that an error P3300 (F) may occur incorrectly at linkage of C++ object
 codes created using templates.

3.5 Illegal lack of some data by conversion of object formats into sysrof
 Fixed is the problem that some data incorretly disapper when all of the following conditions
 are satisfied:
 (1) The source program is written in C++.
 (2) The optimization of deleting unused symbols is enabled.
 (3) The object file of the absolute file format is coverted as ELF->sysrof by
 the converter(helfcnv).
 The end.

