

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

date: 2003/04/24

1/1

RENESAS TECHNICAL UPDATE
Classification
of Production Development Environment No TN-CSX-050A/E Rev 1

THEME
SuperH RISC engine C/C++ Compiler
Ver.7 bug report (7)

Classification of
Information

1. Spec change
2. Supplement of Documents
3. Limitation of Use
4. Change of Mask
5. Change of Production Line

Lot No. term of validity

PRODUCT
NAME

P0700CAS7-MWR
P0700CAS7-SLR
P0700CAS7-H7R Ver.7.x

Reference
Documents

SuperH RISC engine C/C++ Compiler
Assembler Optimizing Linkage Editor
User’s Manual
ADE-702-246A
Rev.2.0

Eternity

Attached is the description of the known bugs in Ver. 7 series of the SuperH RISC engine C/C++ compiler. Inform
the customers who have the package version in the table below of the bugs.

Package version Compiler version
7.0B 7.0B

7.0.01 7.0.03
7.0.02 7.0.04
7.0.03 7.0.06
7.1.00 7.1.00

P0700CAS7-MWR

7.1.01
7.1.02

7.1.01

7.0B 7.0B
7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
7.1.00 7.1.00

P0700CAS7-SLR

7.1.01
7.1.02

7.1.01

7.0B 7.0B
7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
7.1.00 7.1.00

P0700CAS7-H7R

7.1.01
7.1.02

7.1.01

 The check tool can be downloaded from the following URL.
 http://www.renesas.com/eng/products/mpumcu/tool/index.html

Attached: P0700CAS7-030411E
 SuperH RISC engine C/C++ Compiler Ver. 7 Known Bugs Report(7)

P0700CAS7-030411E

SuperH RISC engine C/C++ Compiler ver. 7
Known Bugs Report (7)

The failures found in the ver. 7 series of the SuperH RISC engine C/C++ compiler are listed below.
The check tool for item 1 or 2 can be downloaded from the following URL:

http://www.renesas.com/eng/products/mpumcu/tool/index.html

1. Illegal deletion of an unconditional branch
[Description]

When all of the following conditions are satisfied, the unconditional branch may be deleted illegally.
- The last of a function is conditional statement.
- Conditions are nested in the statement.
- The last condition finishes with a function call and a return statement, and the previous

condition finishes with a function call.

[Example]
 void sub(int parm) {
 if (parm == 0) {

;
 } else if (parm == 1) {
 ;

} else if (parm == 2) {
;

} else if (parm == 3) {
;

} else if (parm == 4) {
;

} else if (parm == 5) {
func1(); /* <A> */

} else {
func2(); /* */
return; /* */

}
return;

}

 sub:
 STS.L PR,@-R15
 TST R4,R4
 BT L11
 MOV R4,R0
 CMP/EQ #1,R0
 BT L11
 CMP/EQ #2,R0
 BT L11
 CMP/EQ #3,R0
 BT L11
 CMP/EQ #4,R0
 BT L11
 CMP/EQ #5,R0
 BF L18
 MOV.L L20+2,R2 ; _func1
 JSR @R2
 NOP

L11:
; A branch to L19 is deleted

L18:
 MOV.L L20+6,R2 ; _func2
 JMP @R2 ; This function is always called
 LDS.L @R15+,PR

L19:
 LDS.L @R15+,PR
 RTS

 NOP

P0700CAS7-030411E

[Conditions]
This problem may occur when all of the following conditions are satisfied.
Instances of this bug in the program can be found using the check tool.

(1) The optimize=1 option is specified.
(2) The last of a function is conditional statement and the conditions are nested.
(3) The last condition finishes with a function call and a return statement (in the example).
(4) The condition previous to (3) finishes with a function call (<A> in the example).

[Solution]
If a relevant failure exists, prevent the problem by either of the following methods.

(1) Specify the optimize=0 option to compile the file.
(2) Add the nop() intrinsic function after <A>.
 <Example>

#include <machine.h> /* Added for nop() */

:
} else if (parm == 5) {

func1(); /* <A> */
nop(); /* Added */

} else {
:

2. Illegal cast from unsigned integer to float
[Description]

When the unsigned integer type variable is cast to the float type, the cast may be deleted illegally.

[Example]
unsigned short us1;
volatile unsigned short us0;
volatile float f0;
float *p;

void func() {
 f0 = *p = ((float)us0, (float)us1);

}

 MOV.L L29+50,R2; _us0
 MOV.L L29+54,R5; _p
 MOV.W @R2,R6
 MOV.L L29+58,R6; _us1
 MOV.W @R6,R2
 EXTU.W R2,R6
 MOV.L @R5,R2
 MOV.L R6,@R2 ; store to *p without cast to float type
 MOV.L @R5,R2
 MOV.L @R2,R6
 MOV.L L29+10,R2; _f0
 RTS
 MOV.L R6,@R2 ; store to f0 without cast to float type

[Conditions]
This problem may occur when all of the following conditions are satisfied.
Instances of this bug in the program can be found using the check tool.

(1) The unsigned integer variable is cast to float type.
(2) The unsigned integer variable is cast to double type and either double=float or fpu=double option
 is specified, or is cast to long double type and fpu=single option is specified.

[Solution]
If a relevant failure exists, prevent the problem by the following method.

(1) Cast the variable to signed integer type which preserves value (or to long double if the variable is
 unsigned int/long type) at first and cast the variable to float type.

P0700CAS7-030411E

3. Illegal movement of stack pointer with ld_ext() or st_ext()
[Description]

When an ld_ext() or st_ext() intrinsic function is used and a local array is specified as a parameter, the
stack pointer may be moved illegally.

[Example]
#include <machine.h>

void main() {
float table[4][4], data1[4][4], data2[4][4];

 :
 ld_ext(table) ;
 mtrx4mul(data1,data2) ;
 :
}

 :
 FRCHG
 FMOV.S @R15+,FR0 ; R15 is moved. When an interrupt occurs, upper area
of

; stack is destroyed
 FMOV.S @R15+,FR1 ; |
 FMOV.S @R15+,FR2 ; |
 FMOV.S @R15+,FR3 ; |
 FMOV.S @R15+,FR4 ; |
 FMOV.S @R15+,FR5 ; |
 FMOV.S @R15+,FR6 ; |
 FMOV.S @R15+,FR7 ; |
 FMOV.S @R15+,FR8 ; |
 FMOV.S @R15+,FR9 ; |
 FMOV.S @R15+,FR10 ; |
 FMOV.S @R15+,FR11 ; |
 FMOV.S @R15+,FR12 ; |
 FMOV.S @R15+,FR13 ; |
 FMOV.S @R15+,FR14 ; |
 FMOV.S @R15+,FR15 ; |
 FRCHG ; |
 ADD #-64,R15 ; V

 [Conditions]
This problem may occur when all of the following conditions are satisfied.

(1) The cpu=sh4 option is specified and the ld_ext() or st_ext() intrinsic function is used.
(2) A local array is specified as the parameter.

[Solution]
If a relevant failure exists, prevent the problem by either of the following methods.

(1) Specify the optimize=0 option to compile the file.
(2) Change the parameter to a global array.

