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Attached is the description of the known bugs in Ver. 7 series of the SuperH RISC engine C/C++ compiler.

The bugs will affect this package version.

Package Version Compiler Version
7.0B 7.0B
7.0.01 7.0.03
7.0.02 7.0.04
7.0.03 7.0.06
PO700CAS7-MWR 7.1.00 7.1.00
7.1.01
7102 7.1.01
7.1.03 7.1.02
7.1.04 7.1.03
7.0B 7.0B
7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
PO700CAS7-SLR 7.1.00 7.1.00
7.1.01
7102 7.1.01
7.1.03 7.1.02
7.1.04 7.1.03
7.0B 7.0B
7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
PO700CAS7-H7R 7.1.00 7.1.00
7.1.01
7102 7.1.01
7.1.03 7.1.02
7.1.04 7.1.03

The check tool can be downloaded from the following URL.

http://www.renesas.com/eng/products/mpumcu/tool/index.html
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SuperH RISC engine C/C++ Compiler ver.7
Known Bugs Report(11)

Problems with the ver. 7 series of the SuperH RISC engine C/C++ compiler are listed below.
The check tool can be downloaded from the following URL:
http://mww.renesas.com/eng/products/mpumcu/tool /index.html

1. Illegal Copy Propagation

[Description]

When a copy instruction existed in a block with multiple branch sources, the copy instruction might be
illegally eliminated.

[Example]
int func(int *x) {
int ret=0;
whi | e(*x++) {
i f(*x==1){
ret+=2;
}
return (ret+2);
}
_func:
MOV #0, R ; Illegally eliminated the copy instruction and converted R7 to R5
L11:
MOV. L @4, R2
ADD #4, R4
; *1lllegaly eliminated MOV R7,R5
TST R2, R2
ADD #2, R5
BT L13
MOV. L @4, RO
CwP/ EQ #1, RO
BT L11 ; *2 By *3, BF L11 was converted
BRA L11
NOP ;. *3lllegaly eliminated MOV R5,R7
L13:
RTS
MoV R5, RO

[Conditions]
This problem might occur when al of the following conditions were fulfilled.
(1) The optimize=1 option was specified.
(2) A conditional statement was described.
(3) A copy instruction existed in a block with multiple branch sources (*1 in the above example).
(4) The block of the branch sources in (3) had a path with no definition of the copy source register
(R7 in the above example) for the copy instruction (in the example, the path branching from *2
to L11).

[Solution]
If a relevant failure exists, prevent the problem by the following method.
(1) Specify optimize=0.
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2. lllegal Elimination of Unnecessary Expressions

[Description]

If athen or else clause of a conditiona statement had an assignment expression and another assignment
expression, of which the both sides had the same variable, follows the said expression, the conditional
statement might be illegally eliminated.

[Example]
int x;

void f(int y){

if (y>=256){ /* lllegal elimination * /
x=0; /* *1 */
}
X=X; /* *2 Eliminated the assignment expression that had the same variable in both sides * /
X++;

void f(int y){

x=0;

X++; / * Propagated x=0 */
}
void f(int y){

x=1;

}

[Conditions]
This problem might occur when all of the following conditions were fulfilled.
(1) The optimize=1 option was specified.
(2) A conditional statement was described.
(3) A then or else clause of the conditional statement of (2) had an assignment expression (*1 in the
above example).
(4) Anassignment expression, in which the both sides had the same variable as the variable assigned
to in (3), followed the conditional statement of (2) (*2 in the above example).

[Solution]

If a relevant failure exists, prevent the problem by one of the following methods.
(1) Specify optimize=0.
(2) Specify opt_range=noblock.
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3. Incorrect GBR Relative Logic Operation

[Description]

If alogic operation with a 1-byte array or a bit-field member for which #pragma gbr_base/gbr_basel was
specified was performed, the result of the operation might be written to an incorrect area.

[Example]
#pragma gbr_base a, b
char a[2],b[2];
void f()
a[0] = b[0] & 1;

MOV #_b- (STARTOF $Q0), RO
RTS
AND. B #1, @ RO, GBR) ;. Wrote the result of the operation to b[Q]

[Conditions]
This problem might occur when all of the following conditions were fulfilled.
(1) The gbr=user option was specified.
(2) #pragmagbr_base/gbr_basel was specified for any of the following variables:
An (unsigned) char-type array
A structure array that has an (unsigned) char-type member
A structure that has an (unsigned) char-type array member
A structure that has a bit-field member of 8 bits or less
(3) A logic operation of a constant (&, |, *) with the variable of (2) (b[Q] in the above example) was
performed.
(4) The variable assigned to by the operation of (3) (a[0] in the above example) fulfilled the
condition of (2).
(5) Variables of (3) and (4) were different variables, different elements of the same array, or
different members of the same structure.

[Solution]
If a relevant failure exists, prevent the problem by one of the following methods.
(1) Cancel specification of #pragma gbr_base/gbr_basel.
(2) Specify gbr=auto (outputs awarning and invalidates #pragma gbr_base/gbr_basel).
(3) Assign theresult of the operation to atemporary variable for which volatile has been specified.

Example:
void f() {
vol atile char tenp;
tenp = b[0] & 1;
a[0] = tenp;



PO700CA S8-040610E

4. lllegal Elimination of Sign Extension

[Description]

If the address of a variable/constant or the index of an array was cast to 1 or 2 bytes and this value was
used for accessing memory, an incorrect memory area might be accessed by eliminating the cast.

[Example]
unsi gned short x;
char a[1000];

void f() {
a[(char)x] = 0;

MOV. L L11+2, R2 ;X
MOV. L L11+6, R6 ;o_a
MOV. W @r2, R
EXTU. B R5, RO
: Eliminated EXTS.B RO,RO
MoV #0, RS ;. H'00000000
RTS
MOV. B R5, @ RO, R6) ;' When x was not within the range of 0 to 127,

;anincorrect address might be referred to.

[Conditions]
This problem might occur when al of the following conditions were fulfilled.

(1) The optimize=1 option was specified.

(2) The address of a variable/constant or the index of an array was explicitly cast to 1 or 2 bytes, or
this function had a char/short type parameter and the parameter was used only in the index of an
array..

(3) Thevalue of (2) was used for accessing memory.

[Solution]
If a relevant failure exists, prevent the problem by the following method.
(1) Specify optimize=0.



