To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

Date: Jun.14.2004

RERESAS TECHNICAL UPD

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
RenesasTechnology Corp.

Product User Development Environment Document TN-CSX-071A/EA | Rev. 1.0
Category No.
. SuperH RISC engine C/C++ Compiler ver.7 Information Lo
Title Known Bugs Report(11) Category Usage Limitation
Lot No. SuperH RISC engine C/C++ Compiler,
. P0O700CAS7-MWR Assembler, Optimizing Linkage Editor
A'gpllgab:e PO700CAS7-SLR geferencet User’'s Manual
roduct 1 po700cAS7-H7R Ver.7.x ocument | REJ10B0047-0100H
Rev.1.00

Attached is the description of the known bugs in Ver. 7 series of the SuperH RISC engine C/C++ compiler.

The bugs will affect this package version.

Package Version Compiler Version
7.0B 7.0B
7.0.01 7.0.03
7.0.02 7.0.04
7.0.03 7.0.06
PO700CAS7-MWR 7.1.00 7.1.00
7.1.01
7102 7.1.01
7.1.03 7.1.02
7.1.04 7.1.03
7.0B 7.0B
7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
PO700CAS7-SLR 7.1.00 7.1.00
7.1.01
7102 7.1.01
7.1.03 7.1.02
7.1.04 7.1.03
7.0B 7.0B
7.0.02 7.0.03
7.0.03 7.0.04
7.0.04 7.0.06
PO700CAS7-H7R 7.1.00 7.1.00
7.1.01
7102 7.1.01
7.1.03 7.1.02
7.1.04 7.1.03

The check tool can be downloaded from the following URL.

http://www.renesas.com/eng/products/mpumcu/tool/index.html

Attached: PO700CAS7-040610E
SuperH RISC engine C/C++ Compiler Ver. 7 Known Bugs Report (11)

(c) 2004. Renesas Technology Corp., All rights reserved. Page 1 of 1
RENESAS

PO700CA S8-040610E

SuperH RISC engine C/C++ Compiler ver.7
Known Bugs Report(11)

Problems with the ver. 7 series of the SuperH RISC engine C/C++ compiler are listed below.
The check tool can be downloaded from the following URL:
http://mww.renesas.com/eng/products/mpumcu/tool /index.html

1. Illegal Copy Propagation

[Description]

When a copy instruction existed in a block with multiple branch sources, the copy instruction might be
illegally eliminated.

[Example]
int func(int *x) {
int ret=0;
whi | e(*x++) {
i f(*x==1){
ret+=2;
}
return (ret+2);
}
_func:
MOV #0, R ; Illegally eliminated the copy instruction and converted R7 to R5
L11:
MOV. L @4, R2
ADD #4, R4
; *1lllegaly eliminated MOV R7,R5
TST R2, R2
ADD #2, R5
BT L13
MOV. L @4, RO
CwP/ EQ #1, RO
BT L11 ; *2 By *3, BF L11 was converted
BRA L11
NOP ;. *3lllegaly eliminated MOV R5,R7
L13:
RTS
MoV R5, RO

[Conditions]
This problem might occur when al of the following conditions were fulfilled.
(1) The optimize=1 option was specified.
(2) A conditional statement was described.
(3) A copy instruction existed in a block with multiple branch sources (*1 in the above example).
(4) The block of the branch sources in (3) had a path with no definition of the copy source register
(R7 in the above example) for the copy instruction (in the example, the path branching from *2
to L11).

[Solution]
If a relevant failure exists, prevent the problem by the following method.
(1) Specify optimize=0.

PO700CA S8-040610E

2. lllegal Elimination of Unnecessary Expressions

[Description]

If athen or else clause of a conditiona statement had an assignment expression and another assignment
expression, of which the both sides had the same variable, follows the said expression, the conditional
statement might be illegally eliminated.

[Example]
int x;

void f(int y){

if (y>=256){ /* lllegal elimination * /
x=0; /* *1 */
}
X=X; /* *2 Eliminated the assignment expression that had the same variable in both sides * /
X++;

void f(int y){

x=0;

X++; / * Propagated x=0 */
}
void f(int y){

x=1;

}

[Conditions]
This problem might occur when all of the following conditions were fulfilled.
(1) The optimize=1 option was specified.
(2) A conditional statement was described.
(3) A then or else clause of the conditional statement of (2) had an assignment expression (*1 in the
above example).
(4) Anassignment expression, in which the both sides had the same variable as the variable assigned
to in (3), followed the conditional statement of (2) (*2 in the above example).

[Solution]

If a relevant failure exists, prevent the problem by one of the following methods.
(1) Specify optimize=0.
(2) Specify opt_range=noblock.

PO700CA S8-040610E

3. Incorrect GBR Relative Logic Operation

[Description]

If alogic operation with a 1-byte array or a bit-field member for which #pragma gbr_base/gbr_basel was
specified was performed, the result of the operation might be written to an incorrect area.

[Example]
#pragma gbr_base a, b
char a[2],b[2];
void f()
a[0] = b[0] & 1;

MOV #_b- (STARTOF $Q0), RO
RTS
AND. B #1, @ RO, GBR) ;. Wrote the result of the operation to b[Q]

[Conditions]
This problem might occur when all of the following conditions were fulfilled.
(1) The gbr=user option was specified.
(2) #pragmagbr_base/gbr_basel was specified for any of the following variables:
An (unsigned) char-type array
A structure array that has an (unsigned) char-type member
A structure that has an (unsigned) char-type array member
A structure that has a bit-field member of 8 bits or less
(3) A logic operation of a constant (&, |, *) with the variable of (2) (b[Q] in the above example) was
performed.
(4) The variable assigned to by the operation of (3) (a[0] in the above example) fulfilled the
condition of (2).
(5) Variables of (3) and (4) were different variables, different elements of the same array, or
different members of the same structure.

[Solution]
If a relevant failure exists, prevent the problem by one of the following methods.
(1) Cancel specification of #pragma gbr_base/gbr_basel.
(2) Specify gbr=auto (outputs awarning and invalidates #pragma gbr_base/gbr_basel).
(3) Assign theresult of the operation to atemporary variable for which volatile has been specified.

Example:
void f() {
vol atile char tenp;
tenp = b[0] & 1;
a[0] = tenp;

PO700CA S8-040610E

4. lllegal Elimination of Sign Extension

[Description]

If the address of a variable/constant or the index of an array was cast to 1 or 2 bytes and this value was
used for accessing memory, an incorrect memory area might be accessed by eliminating the cast.

[Example]
unsi gned short x;
char a[1000];

void f() {
a[(char)x] = 0;

MOV. L L11+2, R2 ;X
MOV. L L11+6, R6 ;o_a
MOV. W @r2, R
EXTU. B R5, RO
: Eliminated EXTS.B RO,RO
MoV #0, RS ;. H'00000000
RTS
MOV. B R5, @ RO, R6) ;' When x was not within the range of 0 to 127,

;anincorrect address might be referred to.

[Conditions]
This problem might occur when al of the following conditions were fulfilled.

(1) The optimize=1 option was specified.

(2) The address of a variable/constant or the index of an array was explicitly cast to 1 or 2 bytes, or
this function had a char/short type parameter and the parameter was used only in the index of an
array..

(3) Thevalue of (2) was used for accessing memory.

[Solution]
If a relevant failure exists, prevent the problem by the following method.
(1) Specify optimize=0.

